US010855604B2

a2 United States Patent

ao) Patent No.: US 10,855,604 B2

Tigli 45) Date of Patent: Dec. 1, 2020
(54) SYSTEMS AND METHODS OF DATA FLOW (56) References Cited
CLASSIFICATION
U.S. PATENT DOCUMENTS
(71) Applicant: Xaxar Inc., San Diego, CA (US) 6,633,540 B1* 10/2003 Raisanen Hg‘%é;g?
8,682,812 B1* 3/2014 Ranjan HO04L 63/1425
(72) Inventor: Hus Tigli, San Diego, CA (US) 706/12
(Continued)
(*) Notice: Subject to any disclaimer, the term of this Eg 2 25585?4332 i} # 3%83 GO6K 9/6267
patent is extended or adjusted under 35
US.C. 154(b) by 0 days. OTHER PUBLICATIONS
. Invitation to Pay Additional Fees in International Application No.
(21) Appl. No.: 16/694,117 PCT/US2019/063050, mail date Feb. 4, 2020.
(Continued)
(22) Filed: Nov. 25, 2019
Primary Examiner — Un C Cho
ssistant r.xaminer — ahman
65 Prior Publication D Assi Exami Shah M Rahm
(65) rior Publication Data (74) Attorney, Agent, or Firm — Knobbe, Martens, Olson
US 2020/0169509 A1~ May 28, 2020 & Bear LLP
(57) ABSTRACT
Related U.S. Application Data Systems and methods of classifying data flows being com-
. L municated on a network by one or more network elements.
(60) Provisional application No. 62/771,635, filed on Nov. One method includes creating a table including information
27, 2018. of packet timestamps and pre-defined packet header fields,
grouping packets into data flows based on information in the
table, assigning flow identifiers to each data flow, determin-
(1) Int. Cl. ing a plurality of feature/characteristic sets having one or
HO4L 12/851 (2013.01) more features and/or one or more characteristics of the data
Ho4L 12/801 .(2013'01) flows, determining one or more classifiers to predict flow
(Continued) labels using the plurality of feature/characteristic sets, and
(52) U.S.CL generating a classification policy that includes the one or
CPC ... HO4L 47/2441 (2013.01); HO4L 47/193 more classifiers to classify data flows on the network. The
(2013.01); HO4L 47/196 (2013.01); method can also include storing the classification policy in
(Continued) at least one non-transitory computer medium that is acces-
. . . sible by a network element that is classifying data flows on
(58) Field of Classification Search the network, and using the classification policy to classify

CPC . HO4L 41/0893; HO4L 41/145; HO4AL 41/147;
HO4L 43/022; HO4L 43/026;

(Continued)

5
7. SFQURNCE
B QUALITY O]
9,718 INDICATING WHETHER PACKT
CAN FRAGMENTED

10. FLAG INDATING WHETHER MOKE
FRAGMENTS FOLLOW
L1 PCSITION OF FRAGNIERT iN ORIGIRAL |~

BDICATE WHETHEK BOTH |
N

OBFAIL PACKET SAMIPLES FRUM NETWIRK

data flows.

20 Claims, 17 Drawing Sheets

700
¥

St

202

TESTDATATO
DETERMINE ACCURAEY

1S CLASSIFIER ACCIRATEY

718

DEVEAMINE A CLASSIFICATION POLICY 1

PBROVIDR CLASSIFICATION FOMCY TG & 1,720
NETWORK ELENENT TG CLASSIFY DATA |
Aows !
\
Al

US 10,855,604 B2

Page 2
(51) Int. C1. 2010/0153316 Al* 6/2010 Duffield HO04L 63/1416
HO4L 12/857 (2013.01) 706/12
FHO4L 29/06 (2006.01) 2011/0019574 A1* 1/2011 Malomsoky HO04L 431%2/42125
(52) US. CL 2014/0090058 A1* 3/2014 Wardccoooovvnn, HO4L 63/1433
CPC ... HO4L 47/2408 (2013.01); HO4L 47/2483 726/23
(2013.01); HO4L 47/2491 (2013.01); HO4L 2014/0321290 ALl* 10/2014 Jin ...coooovvvvnenens HO04L 47/2441
370/241
69/22 (2013.01) 2014/0334304 Al* 11/2014 Zangccooo....... HO4L 47/2441
(58) Field of Classification Search 370/235
CPC HO4L 43/50;, HO4L 45/302; HO4L 47/193; 2015/0071072 Al* 3/2015 Ratzinccco...... GO6F 9/455
HO4L 47/196; HO4L 47/2408;, HO4L 370/235
47/2441; HOAL 47/2483; HO4L 47/2491; 2016/0283859 Al* 9/2016 Fenoglio HO04L 43/50
HO4L, 69/22 2016/0301601 Al* 10/2016 Anand HO04L 69/22
. X 2017/0330107 Al* 11/2017 Gonzalez Sanchezccc.c.....
See application file for complete search history. HO4L 43/026
2017/0364794 Al* 12/2017 Mahkonen HO04L 43/10
(56) References Cited 2018/0189677 Al* 7/2018 Anderson HO4L 63/1408
2018/0219896 Al* 82018 Kokko HO4L 63/1433
U.S. PATENT DOCUMENTS 2019/0279113 A1* 9/2019 Liu .cooovvvrvevennnnn, GO6N 20/00
2019/0294995 Al* 9/2019 Pastor Perales HO4L 43/067
9,124,515 B2* 9/2015 Curtisccccovvvrrnnnns HO041. 69/16 2020/0120131 AL* 4/2020 SONi ..ccovvvvrvrvvreeens GO6N 20/00
9,762,471 B2 9/2017 Vicat-Blanc et al.
9,967,188 B2 5/2018 Kanonakis et al.
10,462,060 B2 10/2019 Ruthstein et al. OTHER PUBLICATIONS
10,484,301 B1* 11/2019 Shukla HO04L 41/0896
2002/0186660 Al* 12/2002 Bahadiroglu HO4L 29/06 International Search Report and Written Opinion in International
370/248 Application No. PCT/US2019/063050, dated Mar. 26, 2020.
2004/0008627 Al* 1/2004 Garg ..., HO4L. 47/824 Written Opinion in International Application No. PCT/US2019/
370/235 063050, dated Jul. 7, 2020.
2008/0126556 Al* 5/2008 Perng HO04L 65/607

709/231 * cited by examiner

US 10,855,604 B2

Sheet 1 of 17

Dec. 1, 2020

U.S. Patent

V1 3HNS9Iid
Vel NOUVDIISSYID IT m%% R R R
SMOH e MO «— MOHVIVAHIVI b | Coio . o
Vivassodd - yivanoQ3asve | 40 NOILYDIHISS V1D U ainaa
| SNOLLOY WYOdY¥3d |
A0
| NOWWOIdISSY1D
R e ety » G3INIANYIL303Yd
oot - e
YIINID VIVA | R -~
v — qmﬁ\m
N HLNYL M
611 4 - - ONNOYD, ININY3LIQ e5T
m _EVL A B ‘SHILINVHY
....... SNIISIL ~# SNINTVHI ¥ \ 4 51DDvd
V1Va INIAYILAQ
SNOIVIDwWI | e
OFT NOLLYYIN3D AD11Od NOILYHIISSYID

U.S. Patent

Dec. 1, 2020 Sheet 2 of 17

TRAIN MACHINE LEARNING ALGORITHM(S)
ON PORTION OF PACKET HEADER DATA
COLLECTED AND/OR CALCULATED, OR USE
ALGORITHMS THAT WERE TRAINED ON
ANOTHER DATA SET

152
/

l

CHOOSE ONE ALGORITHM AMONG THE
MACHINE LEARNING ALGORITHMS
PROVIDED, AND RECEIVE THRESHOLD FOR
FLOW DURATION AND NUMBER OF
PACKETS BEFORE PREDICTION IS MADE

154
/

l

RECEIVE TRAFFIC ENGINEERING ACTION(S)
TO BE TAKEN ON LONG FLOWS

/ 156

l

REPORT FLOW CLASSIFICATION TO

TRAFFIC CONTROL SYSTEM AFTER

THRESHOLD NUMBER OF PACKET
HEADERS ARE EXAMINED IN A NEW FLOW

/ 158

FIGURE 1B

US 10,855,604 B2

150

US 10,855,604 B2

Sheet 3 of 17

Dec. 1, 2020

U.S. Patent

Z 24n814

SIOAIDG

SOLIHMS
SHAOY

IS0 BIOONYM

JHTOVHYOLY WIOMIBN 191U BB

18110044 | [BUORIPEIL

00—

US 10,855,604 B2

Sheet 4 of 17

Dec. 1, 2020

U.S. Patent

€ 24n314

IBINOY
SHINYM
.M%

SIOAIDG

U.S. Patent Dec. 1, 2020 Sheet 5 of 17 US 10,855,604 B2
PACKET TiIME SOURCE P DEST IP PROTOCOL | SOURCE DEST |LENGTH
PORT PORT
100 87.214.975 10.0.2.15 65.55.25.50 TCP 2526 1863 566
101 87.215.788 | 72.14.213.147 | 192.168.3.131 TCP 443 52151 1484
102 87.216.748 10.0.2.15 65.55.25.50 TCP 2526 1863 1233
103 87.217.345 10.0.2.15 65.55.25.50 TCP 2526 1863 933
104 87.218.123 10.0.2.15 65.55.25.50 TCP 2526 1863 345
105 87.219.580 1 72.14.213.147 | 192.168.3.131 TCP 443 52151 476

Figure 4A
PACKET | FLOW ID

100 1
101 2
102 1
103 1
104 1
105 2

Figure 4B

US 10,855,604 B2

Sheet 6 of 17

Dec. 1, 2020

U.S. Patent

Jb 3unsid
£y UONBUISAC] - - | & MO/
2y uonBUSaC] ¢ MOl
Ly UonBUNSS(T — : L MO[H
0=1
A ————————————————————————————s—— s’ K X 8 8 5 &
U aoINos

s1eMord Me} ‘SMOoy AuBW { SMO}} SAILISUSS-aLUL,, / SMOY 801W,) SMO[] TIoUS -

sioxord AuBL ‘SMO) M} 1, SMO) JalIy-Anesy,, /.smoy wueydsis,,) SO BUTT

U.S. Patent Dec. 1, 2020 Sheet 7 of 17 US 10,855,604 B2

500

Y

[Start

lﬁ 502

RECEIVE A PLURALITY OF PACKETS,
GROUPS OF RECEIVED PACKETS
REPRESENTING DATA FLOWS

i ~-504

CLASSIFY EACH DATA FLOW -~ A

l) /.506

PERFORM ACTION(S) ON EACH DATA
FLOW BASED ON CLASSIFICATION

508

PERFORM SYSTEM ACTION(S) BASED ON
CLASSIFICATION

Figure 5

U.S. Patent Dec. 1, 2020 Sheet 8 of 17 US 10,855,604 B2

600

/602
RECEIVE PACKETS REPRESENTING A
PLURALITY OF DATA FLOWS

;

/604
READ HEADER DATA OF THE RECEIVED
PACKETS

l 606

DETERMINE INDIVIDUAL DATA FLOWS FOR
THE RECEIVED PACKETS BASED ON PACKET

HEADER DATA
CLASSIFY THE INDIVIDUAL DATA FLOWS |/~ 608 N
BASED ON A PREDETERMINED CLASSIFIER - A
POLICY N

v

PROCESS EACH DATA FLOW USINGITS
CLASSIFICATION

Figure 6

U.S. Patent Dec. 1, 2020

\ FEATURES (TIME INDEPENDENT)
1 1. FRAME NUMBER

| 2. PROTOCOL

13, SOURCE IP ADDRESS

| 4. DESTINATION 1P ADDRESS

''5. SOURCE PORT NUMBER

1 6. DESTINATION PORT NUMBER

| 7. SEQUENCE NUMBER

1 8. QUALITY OF SERVICE {QoS)

| 9. FLAG INDICATING WHETHER PACKET

| CAN FRAGMENTED

1 10. FLAG INDATING WHETHER MORE

| FRAGMENTS FOLLOW

| 11. POSITION OF FRAGMENT IN ORIGINAL
| PACKET

| 12. FLAG TO INDICATE WHETHER BOTH

I TCP AND UDP FIELDS ARE SET

| 13. TYPE OF SERVICE (TS) FLAG TO SPECIFY
| QoS LEVELS

b e LT I e e et emt et ot mme me e mme mme ee men mme eme mn e

.FLOW D 752
. CHANNEL ID

. SUB-CHANNEL ID

. PACKET POSITION # IN FLOW

. TIME SINCE LAST FRAME IN THIS FLOW
. TIMIE SINCE FIRST FRAME IN THIS FLOW
. TIME SINCE IMMEDIATE LAST FRAME

. CUMULATIVE TIME TO BEUSED IN
ALCULATING AVERAGE TIME, THIS FLOW
9, AVERAGE TIME, THIS FLOW

1 10. AVERAGE TIME DIFFERENCE

: 11. CUMULATIVE PACKET SIZE IN FLOW

: 12. AVERAGE PACKET SIZE INFLOW

| 13. FLOW RATE (#PACKETS/SECOND)

1
2
3
4
5
6
7
8
C

Sheet 9 of 17 US 10,855,604 B2

700

Figure 7 L

/702
OBTAIN PACKET SAMPLES FROM NETWORK
704
GROUP PACKETS INTO DATA FLOWS
i 706
SEPARATE DATA FLOWS INTO TRAINING
DATA AND TEST DATA 922
: R Ve
4 708
DETERMINE FEATURES FROM TRAINING |
DATA PACKET HEADERS =
¥
DETERMINE FLOW CHARACTERISTICS FROM 710
TRAINING DATA FLOWS
TRAIN CLASSIFIER(S) USING FEATURES AND 712
CHARACTERISTICS OF TRAINING DATA
TEST CLASSIFIER({S) USING TESTDATATG 714
DETERMINE ACCURACY
¢ 716
IS CLASSIFIER ACCURATE? no/
Y 717
718
DETERMINE A CLASSIFICATION POLICY
\
PROVIDE CLASSIFICATION POLICYTOA | 720
NETWORK ELEMENT TO CLASSIFY DATA
FLOWS
A

US 10,855,604 B2

Sheet 10 of 17

Dec. 1, 2020

U.S. Patent

[44:4
Vivag is3it

LTL

Z 135
d31L3NvEvd

A L3S
YILINWVEVd

X 13S
HILINVEYd

(423

g 24n8y4
1
i
I
| 08 "
| VIVO ONINIVEL |
““““““““““““““““““““““““““““““““ _
X P "
““““““““““““““““““““ !
i
1
R <
%mwm . N1300W !
|/ d3ISSYID
43LINVY Y m\ |
: !
vX“,uo_‘:\ﬁt !
: M
&]
I
I
““““]
— §
NIE Z 1300W "
I
yIlaNvHyg |/ H3EISSYID
i
,,,,,,,,,,,,,,,,, i
,,,,,,,,,,,,,,,,, !
SNOLLVY 3L |
i
e _
,,,,, !
: i i
: ZT8
1 136 T 1300W "
I
HILINYHYg |/ HFEHISSYD !
H
}
i
1
}
}
}

ovL-

SYIHISSYID 153L

SYFHISSYTD 13313S/3ISINTY/NIVHL

(ONOD3S/SII]NOVdH) ILvd MOTL €T !

MOTH NI 3ZIS 1AV FOVHIAY T
MOTH NIEZIS DOV IALLYVININND "TT "
JONIYI4HIT INIL IDVHIAY 01

MOT SIHL TN IDVYIAY '6 "

MO SIHL TALL FDVHIAY DNILYINDTYD !

i

NIG3sN 38 04 3WLL JALLVININND '8
FNYYS LSV LVIGININT IDNISINIL L “
MO SIHL NEIWWHL 1SHH 3ONISINIL 9
MO SIHL NEFWNVH LSVT IONIS 3L S “
MOTE NE# NOLLISOd 1DOVd P “

QI TINNYHD-8NS '€ i
at TANNVHD ‘T |
QI MO T

{PasDq WY SWIOS] O ISIYTLIIVHVHD w

e mme mo v v v 2 s o wmm wme wmm o wmn mma wme mme mmn_ome wme mes mmn e amy

STAATT SO0 A103dS

OL 914 (S01) 3DIAYIS 40 IdAL €T |
135 34V SATA 4N ANV dDL
HLO® ¥IHLIHM JLVIIONI OL OVH 2T |

1P0vd “

TVNIDSIHO Ni IN3NDVYHS 40 NOLLISOd 1T

MOTIO4 SININOVYH |

FHOW YIHLIHM ONUVYANI OV14 0T

Q3INFADVYHS 39 NVD “

LDV YIHLIHM DONLLVIIAN] OV 6 !
{500} IDIAYIS 40 ALNIVOD '8
HIGAINN IONIND3IS 2!

YIGNNN 1HOd NOILLYNILSIQ "9
HIGAINN LHOd 30¥NOS 'S

$SINAAY di NOILYNILSIA ¥ !

SSIYAAY di IDYNOS € 4

10001044 ‘7!
YIGWNN INVYES T

US 10,855,604 B2

Sheet 11 of 17

Dec. 1, 2020

U.S. Patent

i
\
\,

916
HOSHNO

A

6 34n3i4
174+
(S)LSOH
e
7~ __oze |006
foEs g 816 0i8
ROMAN e JOVHHILNI 301A30
| | NOILYOINNIINOO JOVHOLS
N e _ Lr xr
_
_
,,,,,,, _ \ 4
7 dsl | ¢06
: sng
; _ A A A
1INYILNI | |
/,v,,ﬂ,// - \ _
% | L 4 v A4
/ L _ @!@!@s
_ _\www_ (506 AHOWIIN | AMOWIN
06 706 (S)40SS3004d NIV
(S)4IAY3S |
L o o

v16
30IA3d
1NdNI

cle
AV1dSId

U.S. Patent Dec. 1, 2020 Sheet 12 of 17 US 10,855,604 B2

S
<3}
L
o
Rden
”
%
To)
- s
O] <.
=
e mnd JPVS
Ol
- =
o
© =
© S
Q) = smoyjo# sivoedjo# (GW) seikq gL

U.S. Patent

Dec. 1, 2020

R
%
i

R
S
s TR
RS

394,845

Data Traffic Type 2

Total flows

SMOY JO #

Sheet 13 of 17

fececcecceeaaaaeeaeaeecens

fae
P

T ——
S
BRRRRNN
PR

syoxoed Jo #

US 10,855,604 B2

e

e

Ry
P

oo

(giN) s81Aq |2101

Figure 11

US 10,855,604 B2

Sheet 14 of 17

Dec. 1, 2020

U.S. Patent

o
%

Z1 34n8ig

2 :
G X
2
e
e

19G°L €€ :SMOJ} [e10]

¢ odA] dijei] ejeq

sioed jo# (gN) $81AQ [BJOL

SMO) JO #

US 10,855,604 B2

Sheet 15 of 17

Dec. 1, 2020

U.S. Patent

01 g [4
: : %06
vv %09
vv 9,0/

%08

%06

¢ adAj oiyjel) ejeq

%00}

€1 2an3i4
038 | <«
SWool <
uoheing Mol
G 7 soed gl sjayoed ¢ syooed z
i8jje uodipaid

t %05 j %08
,, - AYQO@
‘‘ - %0/

" %08

-+ %06

vv L O\QOOw

Z adAj oiyjel] ejeq | 8dA | oijel] eeq

SHIAFISSYTD F3dHL ONOWY 1534

SMOT4 ONOTHO4 ADVHNOOV NOLLIIA3Ud

US 10,855,604 B2

Sheet 16 of 17

Dec. 1, 2020

U.S. Patent

¢ adA} oyjel] eeq

%05

%09

%04

%08

- %06

%001

T 24n314
385 |
sSWw 00¢ SWw ool > .
uoheing moj4
ol S Z sioped gl syojoed g syoyoed g
Jaye uonoipaid
~ : %05 : %0%
.. ﬂXVO@ o\oow
“““ .“XVON. o\oON.
,, okuow R O\wgw

Z adA} oyjel] ee(Q

| adA} oiyjed] ereQ

SYIFISSV1D 33¥HL ODNOWV 1534

- %06

%004

SMOTd LHOHS 404 ADVHNIOV NOLLJIA3Hd

US 10,855,604 B2

Sheet 17 of 17

Dec. 1, 2020

U.S. Patent

ST 2Jn3id
%€ L. %891
¢ 9dAT oljfen | S0ALO1jjEeR;
%¥ 8 %818
¢ 9dA] dljjel} | 90A [dijel]
%8 L6 %18
¢ 8aAl el ¢ 90A] dljjel
:0} sabueyo uialjed usym Aseinooy

%666

%E €8

%S°G8

:Aoeinooy

2<:
¢ 9dA] OIjJel} 10]

:m:
Z odA [JI]Jely Jo]

:O:
| S0A1 Oijjel; Io]

:191}1sSe]) 1599

US 10,855,604 B2

1
SYSTEMS AND METHODS OF DATA FLOW
CLASSIFICATION

INCORPORATION BY REFERENCE TO ANY
PRIORITY APPLICATIONS

Any and all applications for which a foreign or domestic
priority claim is identified in the Application Data Sheet as
filed with the present application are hereby incorporated by
reference under 37 CFR 1.57.

This application claims the benefit of U.S. Provisional
Application No. 62/771,635 filed Nov. 27, 2018, titled
“DATA CENTER DATA FLOW CLASSIFICATION VIA
MACHINE LEARNING” which is incorporated by refer-
ence herein in its entirety.

BACKGROUND OF THE INVENTION
Field of the Invention

This invention relates to transmission of digital informa-
tion over a communications network. More particularly, this
invention relates to characterization of data traffic flows in a
network in real-time or near real-time.

Description of the Related Art

Over seventy percent of all Internet information traffic
takes place inside data centers. Data center networks
(DCNis) are comprised of hundreds to hundreds or thousands
of host machines (servers), exchanging data via network
switches and routers over many data links. To meet different
priority requirements while at the same time using network
resources efficiently, it is desirable to have sophisticated
traffic engineering systems and methods. In a typical data
center network, a small percentage of data flows consume a
large majority of bandwidth and therefore has the greatest
impact on performance of the network. As a result, efforts
are made to deal with this situation to assure efficient
operation of the data centers. Generally, these efforts involve
identifying these large data flows which are sometimes
referred to as “elephant flows” or “heavy-hitter flows” or
“long flows” or by similar names and treating these flows
differently than other flows in the data center which are
sometimes referred to as “mice flows” or “short flows.” A
majority of the “long” or “elephant” flows also each have a
large number of bytes (payload) and therefore long/elephant
can also be interpreted as being a “heavy” data flow (i.e.,
having a heavy payload). Many other networks (not just data
center networks) may also handle data traffic with similar
characteristics as described above.

Currently, most data traffic management methods are
either too high-level and rigid, or too granular and compli-
cated. High-level and rigid methods include service level
agreement (SLA) driven quality of service (QoS) labels in
the packet headers or other deterministic priorities tied, for
example, to a specific application running on the network.
Too granular and complicated methods include such data
center protocols as equal-cost multi-path (ECMP) protocols,
where routing decisions are made on each packet by map-
ping multiple data links with the same number of hops from
source to destination and routing the packet along those
multiple “equal cost” paths, or managing the buffers on
network devices so that the “right mix™ of traffic resides in
the buffers and other traffic is excluded or discarded from the
buffers.

10

15

20

25

30

40

45

50

55

60

2

What is needed is a better system and method to provide
substantially real time data flow identification and classifi-
cation via machine learning in data centers and other net-
works.

SUMMARY OF THE INVENTION

The disclosed embodiments can provide a network ele-
ment or network elements in a data center, or in other
network, a predetermined classification policy that can
include systems, processes and software to classify data
flows as they are being transmitted through a network. For
example, classifying data flows in real-time or near real-time
as elephant flows and mice flows inside data centers or other
networks, so that those elephant flows or mice flows can be
subjected to special handling to improve the flow of all data
in the data center.

One innovation includes a method of classifying data
flows, being communicated on a network, by one or more
network element(s). The method includes receiving a plu-
rality of packets from the network, each packet having
header information; segregating the plurality of packets into
a plurality of data flows based at least in part on the
respective header information of each packet. The method
also includes, for each data flow: selecting a subset of the
packets in the respective data flow; classifying the data flow
as one of at least two categories of data flows using one or
more parameters determined from the subset of packets and
using a predetermined classification policy for classifying
data flows, said classification policy including one or more
classifiers each defined using parameters determined from
packets in a plurality of sample data flows, the sample data
flows being previously transmitted on the network; and
routing the data flow in the network based on its respective
classification.

Such methods are further characterized by, or such meth-
ods can further include, a number of aspects (features or
limitations) which are disclosed in summary below and/or
discussed herein. In an aspect, the number of sample data
flows is greater than one thousand data flows, or can be
greater than ten thousand data flows, or greater than one
hundred thousand data flows. The method can further
include storing the predetermined classification policy on
the network element. The method can further include gen-
erating the predetermined classification policy. In an aspect,
generating the predetermined classification policy can
include (i) obtaining samples of packets previously trans-
mitted on the network; (ii) grouping the samples of packets
into data flows; (iii) separating the data flows into training
data and test data; (iv) determining one or more parameters
from the training data; (v) training one or more classifiers
using one or more parameters of the training data; (vii)
testing the one or more classifiers using the test data to
determine an accuracy of each classifier; (viii) determining
if each classifier is accurate, and in response to determining
a classifier is not accurate, repeating parts (v)-(vi) of the
method; and providing the classification policy including the
one or more classifiers to the network element.

In an aspect, the one or more parameters includes one of
more features, each feature being a time-independent feature
determined using respective packet information in a data
flow. In an aspect, the one or more features include at least
one or the following: frame number, protocol, source IP
address, destination IP address, source port number, desti-
nation port number, sequence number, quality of service
(QoS), a flag indicting whether packet can be fragmented,
flag indicting whether one of more fragments follow, posi-

US 10,855,604 B2

3

tion of fragment in original packet, a flag indicating whether
both TCP and UDP fields are set, or a type of service (ToS)
flag to specify Quality of Service levels. In an aspect, the one
or more parameters includes one of more characteristics. In
an aspect, the one or more characteristics includes time-
based characteristics that are calculated using respective
packet information in a data flow. In an aspect, wherein the
one or more characteristics include at least one of the
following: flow ID, channel 1D, sub-channel ID, packet
position number in the flow, time since last frame in this
flow, time since first frame in this flow, average time for this
flow, average time difference, cumulative packet size in this
flow, average packet size in this flow, or flow rate. In some
implementations, the predetermined classification policy
can include one or more classifiers. For example, in various
implementations, a predetermined classification policy can
include at least two classifiers, at least three classifiers, or at
least four classifiers (or more than four classifiers).

In some implementations, the method further includes
selecting one of the at least two classifiers to classify data
flows based on an input received by the network element. In
some implementations, the input is based on a pre-set traffic
engineering policy. In some implementations, the pre-set
engineering policy dictates the use of a certain classifier
based on the time of day or day of the week. The method can
further include performing one or more network actions
based on the classification of the data flows. For example,
the one or more network actions can include assigning
real-time quality of service (QoS) to some or all flows,
routing data flows to different channels, input to flow tables
(SDN), routing long data flows to dedicated links, routing
long data flows to a photonic layer, routing data flows to P2P
wireless networks, adjusting buffer settings, managing
streaming parameters, managing compression, and/or pro-
viding input to data flow traffic engineering. In various
implementations of the method, segregating the plurality of
packets into a plurality of data flows includes assigning
packets having the same 5-tuple data in their header into the
same data flow. In various implementations of the method
segregating the plurality of packets into a plurality of data
flows includes separating packets into different data flows
based at least in part on a predetermined time between two
packets that have the same 5-tuple data.

Another innovation includes a method of classifying data
flows being communicated on a network by one or more
network element(s), the method including creating, from a
plurality of sample packets, a table including information of
packet timestamps and pre-defined packet header fields, the
plurality of sample packets being previously transmitted on
the network; grouping the plurality of sample packets into
data flows based at least in part on information in the table;
assigning flow identifiers to each of the data flows; grouping
the data flows into a training portion and a testing portion;
determining one or more parameters having one or more
features and/or one or more characteristics of the training
data flows; determining a classifier to predict flow labels,
including iteratively training and testing the classifier, using
the training portion and the one or more parameters to train
each classifier, and the testing portion to determine an
accuracy of the classifier; generating a classification policy
that includes the classifier to classify data flows on the
network; and providing the classification policy to be used
by a network element to classify data flows. Such methods
can further include any of the features, aspects and limita-
tions discussed above.

In another innovation, a method of classifying data flows,
being communicated on a network, by one or more network

20

25

40

45

65

4

element(s) includes (i) obtaining samples of packets from
the network, (ii) grouping the samples of packets into data
flows, (iii) separating the data flows into training data and
test data, (iv) training one or more classifiers to classify data
flows using one or more parameters of the training data and
the training data as ground truth, (v) determining accuracy
or the one or more classifiers using the test data, (vi) in
response to determining a classifier is not accurate, repeating
portions (iv)-(v) of the method, and (vi) providing the
classification policy including the one or more classifiers to
be used to classify data flows on the network. The method
can further include storing the classification policy in at least
one non-transitory computer medium that is accessible by
the network element that is classifying data flows on the
network. Any of the methods disclosed herein can include
for generating a classifier in a classification policy (i)
determining an initial set of parameters including a plurality
of features and a plurality of characteristics from the training
data; (ii) using a selected classifier model and the initial set
of parameters for respective data flows in the training data,
classify the data flows in the training data to one of at least
two categories of data flows and determine the accuracy of
the classifications of the respective data flows using the test
data; (iii) generating one or more revised sets of parameters
by changing one or more of the features and characteristics
of the initial set of parameters; (iv) using the selected
classifier and the plurality of revised sets of parameters for
respective data flows in the training data, classify the data
flows in the training data to one of at least two categories of
data flows and determine the respective accuracy of the
classifier for classifying the data flows in the test data using
each revised set of parameters; (v) repeating steps (iii) and
(iv) until a final set of parameters is determined for the
selected classifier that meets an accuracy value, the final set
of parameter being at least one of the revised sets of
parameters; and (vii) including the selected classifier and the
final set of parameters in the classification policy. In some
implementations, the accuracy value is a predetermined
accuracy value. In some implementations, the accuracy
value is the highest accuracy value achieved using the
selected classifier and the test data.

Another innovation is a system that performs any of the
methods described herein. One example system is for gen-
erating a classification policy to classify data flows being
transmitted (communicated) on a network. The classification
policy can be used by a network eclement. The system
includes one or more non-transitory computer storage medi-
ums configured to store at least samples of packets that were
previously transmitted on the network, and to store com-
puter-executable instructions. The system also includes one
or more computer hardware processors in communication
with the one or more non-transitory computer storage medi-
ums, the one or more computer hardware processors con-
figured to execute the computer-executable instructions to at
least (i) group the samples of packets into data flows; (ii)
separate the data flows into training data and test data; (iii)
train one or more classifiers to classify data flows using one
or more parameters of the training data and the training data
as ground truth; (iv) determine accuracy or the one or more
classifiers using the test data, (v) in response to determining
a classifier is not accurate (or further optimization is
desired), repeat portions (iii)-(iv). The system can also be
configured to provide the classification policy, including the
one or more classifiers, to another system (a data center, one
or more network elements) to classify data flows on the
network using the classification policy. A network element
can classify data flows on a network using the predetermined

US 10,855,604 B2

5

classification policy. Importantly, the one or more classifiers
are defined (trained) using samples of packets that were
previously transmitted on the same network that subse-
quently uses the classification policy (e.g., transmitted on
the network hours, days, weeks or months beforehand).
Such systems can further perform one or more network
actions based on the classification of the data flows and the
predetermined classification policy. One or more other net-
work actions described below, and any combinations
thereof, can also be performed. Such one or more network
actions include assigning real-time quality of service (QoS)
to some or all of the flows (for example, short flows can be
given a higher QoS, i.e., as the packet is forwarded to its
destination, the QoS field is re-written or written for the first
time, if QoS field was blank) for higher priority; routing data
flows to different channels (for example, long flows may be
router through higher-speed ports), input to flow tables
(SDN), routing long data flows to dedicated links (for
example, dedicated high-speed links), routing long data
flows to photonic layer (for example, to high-speed photonic
switches), and routing data flows to P2P wireless networks
(for example, a high-speed point-to-point wireless link
inside the data center).

Additional embodiments of the disclosure are described
below in reference to the appended claims, which may serve
as an additional summary of the disclosure.

In various embodiments, systems and/or computer sys-
tems are disclosed that comprise a computer readable stor-
age medium having program instructions embodied there-
with, and one or more processors configured to execute the
program instructions to cause the one or more processors to
perform operations comprising one or more aspects of the
above- and/or below-described embodiments (including one
or more aspects of the appended claims). The classification
policy can be included on server system, or can be included
on an application-specific integrated circuit (ASIC) or other
integrated circuit chips that are customized to include data
flow processing and classifying, and such ASIC’s or other
integrated circuit chips can be included in a network or
network element.

In various embodiments, computer-implemented methods
are disclosed in which, by one or more processors executing
program instructions, one or more aspects of the above-
and/or below-described embodiments (including one or
more aspects of the appended claims) are implemented
and/or performed.

In various embodiments, computer program products
comprising a computer readable storage medium are dis-
closed, wherein the computer readable storage medium has
program instructions embodied therewith, the program
instructions executable by one or more processors to cause
the one or more processors to perform operations compris-
ing one or more aspects of the above-described and/or
below-described embodiments (including one or more
aspects of the appended claims).

BRIEF DESCRIPTION OF THE DRAWINGS

For a better understanding of the present invention, ref-
erence is made to the detailed description of the invention,
by way of example, which is to be read in conjunction with
the following drawings, wherein like elements are given like
reference numerals, and wherein:

FIG. 1A illustrates an overview of receiving and process-
ing packets in a data network (or network element), accord-
ing to some embodiments.

10

15

20

25

30

35

40

45

50

55

60

65

6

FIG. 1B is a flow diagram illustrating an example of a
high level process for determining processes to use for
classifying data flows and taking systems actions on long
flows.

FIG. 2 illustrates an example of a fat-tree architecture of
a data center in which embodiments of the invention can be
implemented.

FIG. 3 illustrates an example of a spine-leaf architecture
of a data center in which embodiments of the invention may
be implemented.

FIG. 4A is a table illustrating a portion of a “packet
capture” file, showing packet numbers and information
relating to the packets, including the 5-tuple data of the
packets.

FIG. 4B is a table illustrating an example of the packets
being assigned to individual flows.

FIG. 4C illustrates an example of data flows (each seg-
ment of a flow consisting of a varying number of packets)
transmitted in a data center or other network, or by a number
of network elements, showing that some are short flows
(“mice flows™) and some are long flows (“elephant flows™).

FIG. 5 is a flow diagram illustrating an example of a
process for classifying data flows and performing actions on
each data flow based on its classification, and further that
one or more actions can also be performed based on the
classification.

FIG. 6 is a flow diagram illustrating an example of a
process for classifying the data flow and processing each
data flow using its classification.

FIG. 7 is a flow diagram illustrating an example of
determining one or more algorithms to use to classify data
flows from a particular data center or other network, or
network element(s), using one or more features from the
data flow and/or one or more characteristics (some time-
based) of the data flows.

FIG. 8 is a schematic further illustrating an example of
determining one or more algorithms to use to classify data
flows from a particular data center or other network, or
network element, using one or more features from the data
flow and/or one or more characteristics (some time-based) of
the data flows.

FIG. 9 is an example of a computer system that may be
used to implement the functionality described herein.

FIG. 10 illustrates an example of data traffic of a first type
that may be transmitted in data center or other network, or
network element, according to some embodiments. This
example of data traffic can be used to determine a system/
processes to classify data flows as described herein.

FIG. 11 illustrates an example of data traffic of a second
type that may be transmitted in a data center or other
network, or network element, according to some embodi-
ments. This example of data traffic can be used to determine
a system/processes to classify data flows as described
herein.

FIG. 12 illustrates an example of data traffic of a third type
that may be transmitted in a data center or other network, or
network element, according to some embodiments. This
example of data traffic can be used to determine a system/
processes to classify data flows as described herein.

FIG. 13 illustrates an example of the different results that
can be obtained for long flows using different algorithms for
the three different data traffic types illustrated in FIGS.
10-12, according to some embodiments.

FIG. 14 illustrates an example of the different results that
can be obtained for short flows using different algorithms for
the three different data traffic types illustrated in FIGS.
10-12, according to some embodiments.

US 10,855,604 B2

7

FIG. 15 illustrates an example of different classification
accuracies for different algorithms based on the data traffic
type, according to some embodiments.

DETAILED DESCRIPTION OF CERTAIN
INVENTIVE ASPECTS

The detailed description of various exemplary embodi-
ments below, in relation to the drawings, is intended as a
description of various aspects of the various exemplary
embodiments of the present invention and is not intended to
represent the only aspects in which the various exemplary
embodiments described herein may be practiced. The
detailed description includes specific details for the purpose
of providing a thorough understanding of the various exem-
plary embodiments of the present invention. However, it will
be apparent to those skilled in the art that some aspects of the
various exemplary embodiments of the present invention
may be practiced without these specific details. In some
instances, well-known structures and components are shown
in block diagram form in order to avoid obscuring various
examples of various embodiments.

Documents incorporated by reference herein are to be
considered an integral part of the application except that, to
the extent that any terms are defined in these incorporated
documents in a manner that conflicts with definitions made
explicitly or implicitly in the present specification, only the
definitions in the present specification should be considered.

Although particular aspects various exemplary embodi-
ments are described herein, numerous variations, combina-
tions and permutations of these aspects fall within the scope
of the disclosure. Although some benefits and advantages of
certain aspects are mentioned, the scope of the disclosure is
not intended to be limited to particular benefits, uses or
objectives.

Overview

As indicated above, there are major shortcomings in data
traffic management processes and systems which manage
data flows using high-level rigid approaches, or finely
granular and complicated approaches, because the type of
data traffic exchanged at any point in time between a pair of
servers, or a set of servers, can vary greatly. For example,
during network communications for a web search request, or
a portion of an online purchase transaction, data transfers
will typically be very short and involve few Internet Proto-
col (IP) packets (or “packets”). At the other extreme, net-
work communications for a backup application can involve
large amounts of data in many packets, and data transfers
from a source computer (or “source”) to a destination
computer (or “destination”) can take a relatively large
amount of time. In some examples, short transfers of packets
might last nanoseconds to milliseconds, whereas long trans-
fers of packets can last hundreds of milliseconds to minutes
or hours.

Rigid and deterministic processes for handling data trans-
fers by a network (e.g., a network element) fall short when
data workloads and/or traffic characteristics change dynami-
cally and unpredictably. At the other extreme, fine granular
methods might create network congestion when, for
example, long and large data transfers are routed along
multiple data links, clogging those links for time-sensitive
data traffic, such as quick e-commerce transactions. For
these reasons, new traffic engineering approaches have been
developed, whereby data traffic is managed by data flows in
the network. A data flow is defined as a series of packets in
sequence, with a set of same packet header characteristics.
A traditional definition of a data flow is the set of IP packets

20

25

30

35

40

45

50

8

with the same source port, destination port, source IP
address, destination IP address, and the type of transfer
protocol. The individual elements of the packet header are
referred to as fields and the above five fields of the packet
header are referred to as the “S-tuple” header information.
Version 4 of IP (IPv4) headers and the later IPv6 both have
14 fields, five of which make up the 5-tuple header infor-
mation. Various flow identification and classification meth-
ods have been proposed. For example, the number of bytes
in successive packets in a data flow on a network can be
added up (e.g., by a network element) and declared to be a
long flow if a certain threshold is reached, in terms of
cumulative number of bytes; in this example, the data flow
is processed as a short flow unless it is declared to be a long
flow. See for example, U.S. Pat. No. 9,124,515 which is
incorporated herein by reference.

In embodiments described herein, a pre-determined clas-
sification policy (“classification policy™) is generated which
can be used to categorize data flows into a set of categories;
for example, two or more categories. In some examples, the
data flows are categorized into either mice flows or elephant
flows using the classification policy. In some examples, the
data flows are categorized into three or more different
categories of flows; for example, short flows, medium-short
flows, and long flows. In another example, the data flows are
categorized into four categories using the classification
policy; for example, short flows, medium-short flows, long
flows, and very long flows. In some implementations, cat-
egorization of data flows into more than four flows is also
possible. Accordingly, although many of the examples
herein refer to classifying data flows into two categories
(e.g., mice and elephant flows), various embodiments can
classify data flows into more than two categories

The definition of what is a particular type of flow may
depend on various factors; for example, the particular data
flows being processed, or the network (or network element)
processing the data flows. In an example, a data flow can be
classified as a long flow if it is greater than 100 ms. In
another example, a data flow can be classified as a long flow
if it is greater than 200 ms. In another example, a data flow
can be classified as a long flow if it is greater than one
second. In an example where data flows are categorized into
more than two categories, a data flow that is less than 100
ms can be classified as a short data flow, a data flow that is
100 ms to less than 200 ms can be classified as a medium
data flow. A data flow that is 200 ms to less than one second
can be classified as a long flow, in a data flow that is greater
than 1 second can be classified as a very long flow. In some
implementations of using a classification policy, the criteria
for classifying a data flow to be a certain category is
predetermined by a user. In some implementations of using
a classification policy, the criteria for what makes a data flow
a certain category is dynamically set, or is set based on a one
or more conditions of a network or of a data flow processing
system.

As used herein, a predetermined classification policy
(sometimes for brevity referred to as a “classification
policy”) refers to a process that has been previously gener-
ated to classify data flows on a network or a network element
(both referred to herein as a “network™ for ease of refer-
ence), where the process is determined using samples of data
flows that were communicated on the network. For example,
by using thousands, tens of thousands, or hundreds of
thousands of data flows from a particular network to gen-
erate a classification policy for that particular network.
Because different networks can handle significantly different
types of data traffic and correspondingly can have signifi-

US 10,855,604 B2

9

cantly different types of data flows, defining a classification
policy for a network using data flows communicated on that
network will most likely result in the highest accuracy in
classifying data flows on that network. However, if a first
network handles packet traffic flow similar to a second
network, a classification policy generated using data flow
samples from the first network can be implemented on the
second network, and the higher the similarity of data traffic
patterns in the first and second network the higher the data
flow classification accuracy is likely to be.

A classification policy can include one or more “classi-
fiers.” Each classifier can be a model-based process or
algorithm that has been generated/trained/defined/refined to
classify data flows into a set of categories. Different classi-
fiers can work differently on data flows that comprise is
different ratio of long and short flows, so it can be beneficial
to train more than one classifier on any given sample of data
to determine which classifier is best for that particular type
of data. “Training” (or defining) a classifier generally refers
to defining the classifier to classify date flows accurately. For
example, training the classifier to achieve a desired accuracy
level when classifying data flows of a certain type of data
(e.g., data that has a certain ratio of long and short flows).
Different classifier goals may be based on a particular
implementation on a network element. For example, training
a classifier to achieve the highest accuracy when classifying
data flows such that the processing is performed within a
certain time limit, training a classifier to achieve the highest
accuracy possible using a small number (or the smallest
number) of parameters, training a classifier to use only a
subset of the packets in a data flow (e.g., the smallest number
of packets) to make the accurate classification of the data
flow. As there are numerous parameters that may be useful
to determine and evaluate to classify a data flow, the training
determines which are the best one or more parameters to use
to classity data flows. For example, which parameters have
the most influence on determining an accurate classification
of a data flow. As an example, an ideal classifier could use
one parameter that can be determined (e.g., read) from one
packet of a data flow to accurately classify that data flow.
However, due at least in part to the variety of data traffic on
different networks, currently no such “one” parameter exists.
Accordingly, one or more parameters may have to be used,
and a parameter may have to be calculated from more than
one packet from a data flow. Thus, determination of a
classification policy may include selecting one of possibly
several classifiers to use, and determining which of one or
more parameters to use. Determination of the classification
policy may also include evaluating different parameters
and/or classifiers based on their accuracy when using a
certain number of packets to make the classification (the
lower the better if sufficient accuracy can still be achieved).

As an example, a classifier can implement a decision
tree-based model, which is a well-known model that can be
represented by a flowchart like diagram that shows the
various outcomes from a series of decisions. As another
example, a classifier can implement a k-nearest neighbor-
based (k-NN) model. A k-NN model (or algorithm) which a
non-parametric method used for classification of data. As
another example, a classifier can implement a random forest-
based model, which is another well-known classification
model that implements different decision trees to predict the
final class of a test object. Other classifiers such as neural
networks or SVM (support vector machine) can also be
used, as one skilled in the art will appreciate. A classifier can
utilize machine-learning techniques that train the classifier
iteratively through processing many sample data flows.

10

15

20

25

30

35

40

45

50

55

60

65

10

Training of a classifier can include using sample data flows
using a variety of different parameters, and using a varying
number of packets in each sample data flow. A classification
policy that includes two or more classifiers can be controlled
to use one of the two or more classifiers in any particular
instance, and be controlled to switch from using one of the
classifiers to using another one of the classifiers based on an
input received by a network element classifying data flows,
or by a condition the network element determines. For
example, a classifier may be selected based on a current
network condition that is determined to be occurring. In
another example, a classifier may be selected based on one
or more other criteria, for example, time of day or day of the
week (e.g., to classify network traffic differently during
times when large backup operations are more likely to be
occurring).

Generating a classification policy can include determin-
ing, for each classifier in the classification policy, determin-
ing certain parameters to use for classifying data flows,
training the classifier to classify data flows using one or
more of the parameters and sample data flows, and testing
the classifier on other sample data flows. The process for
determining parameters, training the classifier using sample
data, and testing the classifier using other sample data may
be generally referred to as “training” a classifier. To train a
classifier, copies of actual packet data flows that include
flows of a variety of different lengths and/or different
payloads that have been transmitted in a network are
obtained as sample data flows. The sample data flows are
evaluated to determine a variety of parameters (“param-
eters” being used herein to collectively refer to “features”
and/or “characteristics™) that characterize the sample data
flows. The “type” of each sample data flow is determined
(e.g., mice flow, elephant flow; or as being one or three or
more types of a flow (e.g., short, medium, long, very long)),
thus establishing the sample data flows as “ground truth”
that can be used to train and test a classifier, and to evaluate
the classifier’s accuracy when it is used to classify a par-
ticular sample data flow. The features and characteristics
used to train the classifiers can include one or more of the
features and/or one or more of the characteristics, which are
disclosed herein. The features and characteristics used to
train the algorithms can also include or one or more other
features and/or one or more characteristics other than what
are listed herein, and such implementations are within the
scope of this invention. For example, features or character-
istics can be determined to help classify certain flows that
are likely to carry certain amounts of traffic (bytes): for
example, flows likely to carry less than or greater than 1
gigabit (or some other threshold). The sample data flows can
be separated into two data sets, a training sample data set (a
first sample data set) used to train each classifier of a
classification policy, and a test sample data set (a second
sample data set) used to test each “trained” classifier. For
example, the training sample data set may include 80% of
the sample data flows and be used to train the classifiers, and
the test sample data set may include 20% of the sample data
flows and be used to test the classifiers after they have been
trained for example, to determine the accuracy of each of the
trained classifiers.

The one or more features used for training a classifier (and
in operation for classifying data flows) can include infor-
mation that can be determined directly from the information
that is in the header of a packet. The one or more charac-
teristics used for training a classifier (and in operation for
classifying data flows) can be calculated from the informa-
tion in the packet header or other aspects of the packets, such

US 10,855,604 B2

11

as the time the packet was transmitted, or the time elapsed
since the last packet was transmitted in the current flow.
Herein such parameters may be referred to as either “fea-
tures” or “characteristics” for ease of reference, but any such
features or characteristics can generally be referred to as
“parameters” of ease of reference. As an example, features
of a packet that can be used to train a classifier can include
one or more of frame number, protocol, source IP address,
destination IP address, source port number, destination port
number, sequence number, quality of service (QoS), a flag
indicting whether packet can be fragmented, flag indicting
whether one of more fragments follow, position of fragment
in original packet, a flag indicating whether both TCP and
UDRP fields are set, or a type of service (ToS) flag to specify
Quality of Service levels. As an example, characteristics that
can be used to train a classifier can include one or more of
flow ID, channel 1D, sub-channel 1D, packet position num-
ber in the flow, time since last frame in this flow, time since
first frame in this flow, average time for this flow, average
time difference, cumulative packet size in this flow, average
packet size in this flow, or flow rate (e.g., in number of
packets per second).

As an example for training a classifier, all of the param-
eters are calculated for data flows in the training sample data
set, and it is determined for each of the data flows in the
training sample data set whether it is a long flow or a short
flow. Then using the “truth” of the type of flow of each data
flow, and using all of the parameters, the classifier is trained
to correctly recognize the type of each data flow in the
training sample data set based on the parameters. Using all
of the parameters, the accuracy of a classifier could be as
high as 100%. However, because some of the parameters are
calculated from the data flow and such calculations take a
certain amount of time, determining all of the parameters for
received data flows is not practical in real-time applications.
For example, in general the more parameters that are used to
classify data flow the longer it takes to classify the data flow
such that there is a trade-off between the number of param-
eters that are used in the speed of the classification. Also,
because some of the parameters are determined by time-
based calculations where more than one packet needs to be
evaluated to determine the parameter, it can be desirable to
minimize the number parameters that require time-based
calculations while still achieving acceptable accuracy clas-
sification. Accordingly, additional iterations of the evaluat-
ing the training sample data set by a classifier are performed
to determine a set of parameters, that is less than all of the
parameters, they can be used to accurately classify the data
flows.

For example, iterations of training a classifier can be
performed using various subsets of the 26 parameters iden-
tified above, where each iteration has a different combina-
tion and/or a different number of parameters. Based on this
training, a subset of the parameters that are most likely to
yield the highest accuracy for that particular classifier (e.g.,
a particular classifier model) on a sample data set can be
determined. For example, for a particular sample data set it
may be determined that using only five parameters are
necessary to achieve a particular accuracy (e.g., 95%), and
using only three parameters yields an accuracy of 85% but
the classifications can be performed faster and require less
resources. Based on a particular implementation in the
performance goals of the network that will be using the
predetermined classification policy, a provided classification
policy may include a classifier that uses five of the param-
eters (and can achieve 95% accuracy), or a classifier that
uses three of the parameters (and can achieve 85% accu-

10

15

20

25

30

35

40

45

50

55

60

65

12

racy). In some implementation, the classification policy can
include both a classifier that uses five and a classifier that
uses three of the parameters, and the network can switch
between using the different classifiers based on one or more
conditions. In training a classifier, the training may deter-
mine certain parameters as being the most useful in deter-
mining the classification of a data flow. Another factor that
is considered in training a classifier is the number of packets
of a data flow that it takes to make a classification decision,
because evaluating a smaller number of packets in achieving
an accurate classification is desirable.

For example, in some instances (e.g., based on the train-
ing sample data set and the classifier-model selected) the
training may determine that the parameter time since first
frame in this flow is the most important parameter in
determining the classification of a data flow. In another
example, the training may determine that the parameter flow
rate is the most important parameter determine the classifi-
cation of data flow. After one or more classifiers have been
trained using the training sample data set, each classifier can
be tested using the test sample data set, to test the classifier
in classifying data flows that it has not been trained on. The
parameters used for a classifier can then be iteratively
refined, and additional training and testing performed; for
example, to optimize the classifier’s accuracy while mini-
mizing the amount of time the classifier takes to classify the
data flows. The training and testing of the classifiers are
performed “off-line” due to the extensive time required,
where thousands of iterations may be performed on many
thousands of sample data flows in order to determine, for
that particular sample data and for that particular classifier
model, the set of parameters that are best used to classify the
data flows to achieve an acceptable accuracy for the require-
ments of the network, and where the classifications are
performed within an acceptable amount of time to minimize
the impact to network performance for managing data flows.
In one example, using a set of parameters for certain sample
data, three classifiers are tested at three different thresholds
for the duration of elephant flows for three different data
sets. After examining only the first two packets in a flow,
prediction accuracy of higher than 77% has been shown to
be possible. Once an elephant flow has been predicted, traffic
engineering actions can be taken, depending on the user, to
improve the efficiency and the performance of the data
center or other network.

After the parameters for one or more classifiers have been
determined, a classification policy that includes the one or
more classifiers can be provided to a network element and
implemented to classify data flows in the network. For
example, the network element can select one of the classi-
fiers in a classification policy stored at the network element,
determine the parameters used by the selected classifier in
classifying the data flows in real time. In operation, once
data packets have been grouped into data flows, the classi-
fication policy uses a subset of the packets in the data flow
to determine its classification. In an example, the classifi-
cation policy uses two packets of a data flow to determine its
classification. In other examples, the classification policy
uses more than two packets of a data flow to determine its
classification. That is, a classification policy can use three
packets, four packets, five packets, six packets, seven pack-
ets, eight packets, nine packets, or ten packets of a data flow
determines classification. In some limitations, a classifica-
tion policy can use more than ten packets of data flow to
determine its classification, although generally as few pack-
ets as possible are used to minimize network resources for
determining the classification (e.g., calculating parameters)

US 10,855,604 B2

13

and to minimize the time it takes to classify each data flow.
In some examples, where the speed of classification is of
utmost importance, the classifier can be programmed to
make a classification decision even after the very first packet
in a data flow.

In some instances, various actions of the network can be
taken based on the classifications determined by the classi-
fication policy. In various augmentations, the actions in the
network can include one or more of the following: assigning
real-time quality of service to certain flows, routing certain
flows to different communication channels, providing input
to flow tables (SDN), routing long flows or “heavy” flow to
dedicated links, routing long or “heavy” flows to photonic
layers, routing flows to P2P wireless networks, adjusting
buffer settings of certain network elements, managing
streaming parameters for the network, or providing input to
other traffic engineering programs or systems.

Various embodiments of the present disclosure provide
improvements to various technologies and technological
fields. For example, as described above, existing data flow
classification can be inaccurate, slow, and/or inconsistent,
and various embodiments of the disclosure provide signifi-
cant improvements over such technology. Additionally, vari-
ous embodiments of the present disclosure for utilizing
machine learning models to improve performance of a
computer equipment at a communication data center are
inextricably tied to computer technology. For example,
methods that improve performance of computers at a com-
munication center can include one or more of creating a
table of packet time-stamps and predefined packet header
fields, grouping packets into flows and assigning flow iden-
tifications, calculating flow statistics, assigning a flow clas-
sification label to each flow, creating a feature set for training
the machine learning models, training the machine learning
models to predict flow labels, and using the computer
equipment to predict the flow labels and using the predicted
flow labels to improve traffic engineering. Such features and
others are intimately tied to, and enabled by, computer
technology, and would not exist except for computer tech-
nology. For example, the interactions with displayed data
described herein in reference to various embodiments cannot
reasonably be performed by humans alone, without the
computer technology upon which they are implemented.
Further, the implementation of the various embodiments of
the present disclosure via computer technology enables
many of the advantages described herein, including more
efficient classification of data flows, and performing actions
on a network as a result of the data flow classification.

The present invention can be adapted for use in computer
facilities that are generally known as data centers or “cloud
environments” or, generally “IP networks,”—that is any
network that uses the Internet Protocol for transmitting data
in packets. Identification and classification of data flows
allows traffic to be managed at a more granular level than
high-level priorities, but at a less granular level than indi-
vidual packets. For example, if flows likely to last long and
therefore likely to clog up data links can be identified, these
flows might be routed differently (such as via special high-
speed links). Or, identification of likely long flows might
permit the traffic engineering methods to be applied differ-
ently for those specific flows. For long flows to be managed
differently, they need to be identified real time in networks.
This can be difficult, as flow durations may be short, vary
greatly and change dynamically. Some long flows can be
identified by discovering the application they belong to
(such as data mirroring), but such approaches usually require

10

15

20

25

30

35

40

45

50

55

60

65

14

deep packet inspection (DPI), which is resource intensive
and usually considered undesirable or even impossible if
data payloads are encrypted.

Terms

In order to facilitate an understanding of the systems and
methods discussed herein, a number of terms are defined
below. The terms defined below, as well as other terms used
herein, should be construed to include the provided defini-
tions, the ordinary and customary meaning of the terms,
and/or any other implied meaning for the respective terms.
Thus, the definitions below do not limit the meaning of these
terms, but only provide exemplary definitions.

Average Packet Size in Flow: a calculation of the average
packet size in a data flow, or at least the packets in a data
flow that are being evaluated for average packet size.

Average Time, this Flow: a calculated characteristic indi-
cating the average time duration since the first frame of a
particular data flow.

Average Time Difference: a calculated characteristic indi-
cating the average of time differences between frames in this
flow and their immediate previous frames that may not be in
this flow.

Can Packet be Fragmented: refers to determining whether
a Don’t Fragment (DF) flag is set in the IP header indicating
never perform fragmentation of the packet.

Channel ID: Defines the channel that the flow belongs to.

Cumulative Time to be used in Calculating Average Time,
this flow: the cumulative Time Since Immediate Last Frame
to be used in calculating Average Time Difference.

Cumulative Packet Size in Flow: a calculated character-
istic indicating the cumulative packet size of packets in the
flow.

Destination IP Address: a host Internet protocol address a
packet is being sent to.

Destination Port Number: the port number on the remote
host to which the packet is sent.

DPI: Deep packet inspection is a type of data processing
that inspects in detail the data being sent over a computer
network, and usually takes action by blocking, re-routing, or
logging it accordingly.

Flag Indicating Whether Both TCP and UDP Fields are
Set: a flag that can be set to indicate both TCP and UDP
protocol is set.

Flow ID: A unique integer assigned to a flow.

Frame Number: a frame is a digital data transmission unit
in computer networking and telecommunication. In systems
transmitting packets, a frame is a simple container for a
single network packet.

Flow Rate: a calculated characteristic determined from
the number of packets per second.

Network Element: a network element is a manageable
logical entity in a computer network uniting one or more
physical devices, and can include processes and/or hardware
for processing data flows.

More Fragments flag: specifies whether more fragments
are to follow—the more fragments flag in the first packet is
set to “1” to indicate more fragments are to follow.

Packet Position Number in Flow: the position of the
packet in a data flow, i.e. the number of packets so far in this
flow.

Position of Fragment in Original Packet: if the packet was
fragmented, the position of a fragment in the original packet.

Protocol: the transport protocol; for example, UDP or
TCP.

US 10,855,604 B2

15

Quality of Service: Quality of service (QoS) is a descrip-
tion or measurement of the overall performance of a service
(e.g., a network) particularly the performance seen by the
users of the network. For example, short flows can be given
a higher QoS. In the network, packet frame headers may
contain numbers indicating a higher or lower priority to be
given to the packet when forwarding to the next destination.
In some instances, the QoS is determined by customer
agreements or by traffic engineering.

SDN: Software-defined networking technology is an
approach to network management that enables dynamic,
programmatically efficient network configuration in order to
improve network performance and monitoring.

Source IP Address: an IP address from which a packet is
sent.

Source Port Number: the port number on the source host
from which a packet is sent.

Sequence Number: the sequence number identifies the
order of the packets sent from each computer so that the data
can be reconstructed in order, regardless of any packet
reordering or packet loss that may occur during transmis-
sion.

Sub-Channel ID: Flow number that indicates the order of
this flow among the rest of the flows in this Channel ID.

Time Since First Frame in this Flow: a calculated char-
acteristic for the time that has passed since the first frame in
a particular flow.

Time Since Immediate Last Frame: a calculated charac-
teristic for the time that has passed since the immediate last
frame that does not have to be in this flow.

Time Since Last Frame in this Flow: a calculated char-
acteristic for the time that has passed since the last frame in
a flow.

ToS “type of service” Flag to Specify Any QoS Levels:
The Type of Service (ToS) bits are a set of four-bit flags in
the IP packet header. When any one of these bit flags is set,
routers may handle the packet differently than packets with
no TOS bits set.

Tlustrative Example of a Data Flow Classifier

Described below is an illustrative example of embodi-
ments of systems and methods of a data flow classifier. Other
examples of such data flow classifier using some, or all, of
the described technology, or additional technology with the
described technology, are also possible.

FIG. 1A illustrates an overview of a system that uses a
predetermined classification policy to classify data flows on
a network and perform actions based on the data flow
classification, where the predetermined policy is generated
based on packets previously received on that particular
network. Further details of the operations illustrated in FIG.
1A are described in further detail herein.

Packets 105 are transmitted on a network of a data center
100. The packets 105 represent a variety of communications
that relate to, for example, online retail, searches, interactive
video, backups, migration, downloads, interactive video,
and the like. At block 110 the data center 100 identifies
discrete data flows from the plurality of packets. For
example, discrete data flows can be determined by grouping
packets having the same 5-tuple packet header information
into a data flow, as illustrated in FIGS. 4A and 4B.

At block 115 the data center 100 classifies each data flow
using a predetermined classification policy 120. In some
implementations, a network element classifies each data
flow using a stored predetermined classification policy that
the network element has access to, for example, stored in a
non-transitory memory component of the network element.
In some examples, the classification policy is stored in

15

20

30

40

45

55

60

16

memory of a computer processing component (e.g., an
ASIC) of the network element. The classification policy
includes information that can be used to classify the data
flows. In some implementation, the information includes one
or more classifiers. In some implementations, the classifi-
cation policy is implemented in a lookup table that includes
thresholds relating to certain parameters which are calcu-
lated from some of the packets of each data flow, in
accordance with the classification policy. When a classifi-
cation policy has one or more classifiers, the network
element can select one of the classifiers to classify the data
flows. A particular classifier can be selected and then used
for a period of time (e.g., minutes, hours, or days, etc.),
where the selection can be based on information from the
data center, the time of day, or the day of the week, a user
input, or based on other input provided to the network
element.

The classification policy is determined “offline,” that is,
determined separate from the operations of classifying the
data flows. Historical packets 135 that were previously
transmitted on a network of the data center 100 can be
communicated 134 to a classification policy generation
system 140. To generate the classification policy, the his-
torical packets are grouped into their respective data flows,
numerous parameters (for example, as illustrated in FIG. 8)
are calculated for each data flow, and the actual type of each
data flow is determined in a calculations portion 141 of the
classification policy generation process. The actual type of
each data flow is used as “ground truth” for subsequent
training and testing of classifiers. In a training portion 142
of the classification policy generation process, one or more
classifiers are trained to classify data flows based on one or
more of the parameters using a training portion of the
historical packets. Then in a testing portion 143 of the
classification policy generation process, the trained classi-
fiers are tested using a test portion of the historical packets
to determine an accuracy of the classifiers. Further training
and testing may to be performed iteratively until the accu-
racy of classifiers is optimized. The classification policy is
then communicated to the data center and stored to be used
in real-time data flow classification operations. In an imple-
mentation where a classification policy includes more than
on classifier, in some instances a separate system can keep
track of the accuracy of the classifier, and if below a certain
level, the system can switch to another classifier. Or, the
system can be programmed to use a certain classifier at
certain times or at certain points in the data network.

After a data flow is classified at block 125, data center
network may perform one or more actions based on the data
flow classification. For example, routing certain classifica-
tions of data flows to different channels, routing long data
flows to dedicated links, etc. At block 130 the data center
completes processing the data flow communicating the
packets associated with the data flow to its intended desti-
nation. Several techniques currently utilized at data centers
may be useful in applications of the present invention. For
example, packet header data are generally available from
common monitoring methods such as NetFlow, SFlow, or
other commercial monitoring software platforms. The sys-
tem creates tables of packet timestamps (if timestamps are
available) and predetermined packet header fields and
groups packets into data flows as indicated in FIGS. 4A and
4B. If two packets of a flow data are separated by more than
apredefined time-period, each may be assigned to a different
field and get its own flow ID number. Similarly, SYN and
FIN flags may be used to split unique data flows.

US 10,855,604 B2

17

FIG. 1B is a flow diagram illustrating an example of a
high level process 150 for determining processes to use for
training classifiers of a classification policy, selecting an
algorithm for classifying data flows, taking systems actions
on long flows, and classifying data flows. This process can
be implemented on a network (for example, in a data center
on a network element. using the techniques described herein.
At block 152, the process 150 trains one or more machine
learning algorithms on portions of packet header data that
was collected as sample data from a network, or uses
algorithms that were trained on another data set. Block 152
can be performed in a non-operational training environment,
for example, outside of the data center due to the extensive
time it takes for training to occur. After the classification
policy with the trained machine learning algorithms have
been installed, or are otherwise accessible by a data center,
at block 154 the method 150 selects an algorithm among the
machine learning algorithms, and receives input of a thresh-
old for flow duration in a number of packets before a
predictions made as inputs to the machine learning algo-
rithm. At block 156, the method 150 receives in input
indicating one or more traffic actions to be taken for data
flows identified as being a long data flow. Finally, at block
158, the method 150 reports data flow classification to a
traffic control system after a threshold number of packets are
examined for a newly received data flow.

FIG. 2 illustrates an example of a fat-tree architecture of
a data center in which embodiments of the invention can be
implemented. The fat tree network is a universal network for
efficient communication. In a tree data structure, every
branch has the same thickness, regardless of their place in
the hierarchy—they are all “skinny” (skinny in this context
means low-bandwidth). In a fat tree, branches nearer the top
of the hierarchy are “fatter” (thicker) than branches further
down the hierarchy. In a telecommunications network, the
branches are data links; the varied thickness (bandwidth) of
the data links allows for more efficient and technology-
specific use. The Fat Tree architecture can include three
levels of switching, i.e., Top of Rack (ToR), Aggregation and
Core, and generally allows more connectivity among hosts.

FIG. 3 illustrates an example of a Spine-Leaf architecture
of a data center in which embodiments of the invention may
be implemented. The Spine-Leaf architecture has each spine
switch connected to each leaf/ToR switch and generally
allows ease of expansion, such as adding more data pro-
cessing equipment over time. With spine-leaf configura-
tions, all devices are exactly the same number of segments
away and contain a predictable and consistent amount of
delay or latency for traveling information. This is possible
because of the new topology design that has only two layers,
the Spine layer and Leaf layer. The Spine layer (made up of
switches that perform routing) is the backbone of the net-
work, where every Leaf switch is interconnected with each
and every Spine switch.

Fat-Tree networks and Spine-Leaf networks are two data
center architectures whose network/network elements can
benefit from the advantages of the embodiments of the
invention, other data center architectures can also benefit.
While Fat-Tree and Spine-Leaf architectures are most com-
mon, there are many other data center and high-performance
computing (HPC) architectures, as well as other network
architectures (such as those in a network operated by an
Internet Service Provider (ISP) that can benefit from the
advantages of the embodiments of the invention.

FIG. 4A is a table illustrating a portion of a “packet
capture” file, showing packet numbers and information
relating to the packets, including the 5-tuple data of the

20

30

40

45

50

55

18

packets. The information in this table represents packet
information that may be determined from packets received
by the data center 100 in FIG. 1A, and which can be used to
identify discrete data flows, where “like” packets are
grouped into an individual data flow. In this example, the
table in FIG. 4A shows packet information for six packets,
packets 100-105, but is representative of the billions of
packets a data center may receive. The table includes for
each of packets 100-105 its 5-tuple values which are a set of
five different values that include a source IP address/port
number, destination IP address/port number and the protocol
in use. The table also includes a packet designator (100-
105). The time the packet was received, and the packet
length. Packets are determined to be part the same data flow
when they have the same S5-tuple information. In this
example, packets 100, 102, 103, and 104 have the same
S-tuple information, which indicates the part of the same
data flow. Packets 101 and 105 have the same S5-tuple
information, which indicates they are part of the same data
flow, different from the data flow that includes packets 100,
102, 103, and 104. If two packets of a flow are separated by
more than a predetermined time period, each may be
assigned to different flow get its own flow number. Similarly,
STN and FIN flags may be used to split unique data flows
into separate flows.

FIG. 4B is a table illustrating an example of the packets
being assigned to individual flows. For example, packets
100, 102, 103, and 104 are assigned a Flow ID of “1.”
Packets 101 and 105 are assigned a Flow ID of “2.”
Processes that perform the determination of the S-tuple
information for a stream of packets in group the packets into
individual data flows can be used by the data center 100 to
identify individual data flows 110 (FIG. 1), which then can
be classified to be a certain type of data flow (e.g., elephant
or mice flow; category 1 (short), category 2 (medium),
category 3 (long), etc.) as desired by the implementation.

FIG. 4C illustrates an example of data flows (each seg-
ment of a flow consisting of a varying number of packets)
transmitted in a data center or other network, or by a number
of network elements, showing that some are short flows
(“mice flows™) and some are long flows (“elephant flows™).
The flows from one source may go to different destinations.
Each flow is comprised of a varying number of successive
packets, with each packet typically carrying a varying
amount of payload data (in number of bytes). In the illus-
tration, Flow 1 and Flow 3 may be mice flows if the total
duration or the total payload of the flow is less than a certain
threshold, and Flow 2 may be an elephant flow if the total
duration or the payload of flow exceeds a given threshold.
Mice flows generally have latency sensitivity, with the
quality of experience of the user matters the most; for
example, in online retail, search, some Internet of Things
(IoT) traffic, interactive video, and the like. Elephant flows
generally have less sensitivity to latency, and can include
backup, migration, downloads, and the like.

FIG. 5 is a flow diagram illustrating an example of a high
level process 500 for classitying data flows and performing
actions on each data flow based on its classification, and
further that one or more actions can also be performed based
on the classification. Such a process can be performed in the
data center 100 illustrated in FIG. 1, which may have, for
example, a fat-tree or spline-leaf architecture as illustrated in
FIGS. 2 and 3, respectively. FIGS. 6-8 provide additional
details of processing/actions that may be included in process
500. At block 502, process 500 receives a plurality of
packets where groups of the packets represent individual
data flows. Using the packets 5-tuple information, the pack-

US 10,855,604 B2

19

ets can be grouped into individual data flows and can be
assigned a flow ID, as described in reference to FIGS. 4A
and 4B.

At block 504, the process 500 classifies each data flow in
real-time using a predetermined classification policy that is
accessible to the process 500. For example, if process 500 is
being performed within a single chip (e.g., an ASIC), or a set
of chips, the classification policy may be stored in a non-
transitory computer medium within the chip, or accessible
by the chip, as represented by the circle “A.” The classifi-
cation of each data flow is a prediction of whether that data
flow will last a long time or short time (when the data flow
is being classified into two categories). The classification of
a data flow is based on packet header information, and not
DPI. The classification of data flow is independent of the
transfer protocol (e.g., TCP/IP, UDP, etc.). Using the clas-
sification policy, it data flow can be accurately classified
using only a few of the packets in the data flow. In some
instances, 2 packets of a data flow are used. In other
instances, 3 packets, 4 packets, 5 packets, 6 packets, 7
packets, 8 packets, 9 packets, or 10 packets can be used to
classify each data flow.

The classification policy includes at least one classifier
that has information to classify the data flows into catego-
ries. For example, into two categories (e.g., elephant or mice
flows), three categories, (e.g., category 1/short, category
2/medium, category 3/long), four categories (category
1/short, category 2/medium, category 3/long, category
4/very long), or more than four categories (category 1,
category 2, category 3, category 4, category 5, . . ., category
n), as desired or required by the implementation. The
classification policy can include more than one classifier
(e.g., two classifiers or three classifiers). When the classifi-
cation policy includes more than one classifier, each classi-
fier may be optimized to accurately classity a different type
of traffic flow data, for example, traffic flow data that
includes a different percentage of length of data flows, or
different lengths of data flows. In some examples, the
process 500 can select a classifier from the classification
policy to use to classify the data flows based on, for
example, an input it receives indicating a system condition,
or based on the time of day or the date. Each classifier has
been trained (configured or structured) to classify data flows
using certain parameters determined from a subset of the
packets in the data flow being classified, which is further
described in reference to FIGS. 7 and 8.

After a data flow is classified, at block 506 the process 500
performs an action on the data flow based on the classifi-
cation (label). For example, long flows can be diverted to
circuit switched high-capacity paths, using photonic
switches. In software defined environments, the data flow
label can be used to modify the flow tables used by software
defined controllers. Flows may need a flag set for moving to
a different traffic engineering scheme or a load balancing
scheme.

At block 508, the process 500 may perform one or more
systems actions based on the classification of a data flow, or
based on classifications of more than one data flow. Such
actions can include assigning real-time quality of service
(QoS) to flows. For example, as the packet is forwarded to
its destination, the QoS field is re-written (or written for the
first time, if the QoS field is blank) for higher priority. In
some instances, such actions can include routing data flows
to different channels. In some instances, such actions can
include providing input to flow tables (SDN) that affect flow
priority, determining how a data flow is transmitted in the
network. Such actions can also include routing long data

10

15

20

25

30

35

40

45

50

55

60

65

20

flows to dedicated links, for example, dedicated high speed
links. Other actions can include routing long data flows to a
photonic layer, for example, high-speed photonic switches.
Other actions can include routing data flows to P2P wireless
networks, adjust buffer settings (for example, the percent of
buffer allocates to elephant flows could be a maximum of x
% of the buffer, and adjusted as needed). Another action can
include managing streaming parameters, for example, how
much is streamed ahead of time (e.g., ahead of play).
Another action can include managing compression, for
example, deciding not to compress short flows, or only
compressing flows likely to last more than a threshold.
Another action can include providing input to data flow
traffic engineering, for example, deciding to override ECMP
for certain long flows, so large flows are not routed via
multiple paths.

FIG. 6 is a flow diagram illustrating an example of a
process 600 for classifying data flows and processing each
data flow using its classification using the techniques
described herein. Aspects of process 600 may be similar to
those of process 500 for similar operations. Process 600 can
be implemented in a data center, for example, on a network
element.

Referring to FIG. 6, at block 602 the process 600 can
receive a plurality of packets representing a plurality of
different data flows. At block 604, the process 600 reads
header data of the received packets (e.g., S5-tuple informa-
tion) and can form a table or store the header data. At block
606, the process 600 determines individual data flows for the
received packets based on packet header data. For example,
as described in reference to FIGS. 4A and 4B. At block 608,
process 600 classifies the individual data flows based on a
predetermined classifier policy, using information deter-
mined from a small set of packets from each individual data
flow (e.g., 2-10 packets). At block 610, the process 600
processes each data flow based on its classification, e.g.,
based on whether the data flow is a mice flow or an elephant
flow.

FIG. 7 is a flow diagram illustrating an example process
700 of determining a classification policy that includes one
or more classifiers to be used as part of a classification policy
for classifying data flows on a particular network. In other
words, process 700 generates a “predetermined” classifica-
tion policy off-line from a network. While example illus-
trated in FIG. 7 is generally described in reference to
classifying the data flows into two categories, it can just as
easily be applied to classifying data flows into three catego-
ries, four categories, or five categories, or more. Once the
classification policy has been generated, it can then be
installed on the network to classify data flow. The process
700 may implement one or several of the techniques
described herein relating to determining a configuration of a
classifier and related to classifying data flows.

At block 702, process 700 obtain samples of packets that
have been transmitted on a network. Because different
networks can have significantly a different traffic flow of
packets, the samples are obtained from the actual network on
which the classification policy will be used. In other words,
the samples obtained from actual (same) network that will
use the classification policy allow a classifier in the classi-
fication policy to be tailored to be most accurate to classify
the type of data flows that the network is processing in
normal day-to-day operations. At block 704 the process 700
groups the packets into data flows (e.g., using S-tuple
information). If two packets of a flow are separated by more
than a predetermined time period, each may be assigned to
different flow get its own flow number. Similarly, SYN and

US 10,855,604 B2

21

FIN flags may be used to split unique data flows into
separate flows. At block 706, the samples are separated into
two groups, training data and test data. Because this pro-
cessing is done off-line (that is, not an operational scenario
or time is of the essence) the data flows can be evaluated to
determine with accuracy the length of the data flow (e.g.,
whether it is a mice or elephant flow). For example, 80% of
the samples may be placed into the training data group
which is used to train machine learning algorithms of the
classifiers, and the other 20% of the samples may be placed
into the test data group to be used to test the effectiveness of
the particular machine learning algorithms and the predic-
tive accuracy. There are no flows in the training data group
that are also in the test data group.

In portion 722 of the flow diagram the process 700
generates the classification policy, including determining/
training classifiers that are used in the classification policy.
Referring to FIG. 7, at block 708 the process 700 determines
features from the training data packet headers, and at block
710 the process 700 determines flow characteristics from the
training data flows. In these portions of the process, learning
and testing parameters (‘“features” and “characteristics™) are
developed from packet header and flow data to permit these
parameters to contribute to a determination of whether each
particular flow is to be designated an elephant flow or mice
flow. In this example, as illustrated in FIG. 7, to develop the
learning and testing parameters, a set of “features” 750 are
identified and directly extracted from packet headers. In this
example 13 features are identified, these features include
frame number, protocol, source IP address, destination IP
address, source port number, destination port number,
sequence number, quality of service (QoS), a flag indicting
whether packet can be fragmented (e.g., don’t fragment (DF)
flag), flag indicting whether one of more fragments follow,
position of fragment in original packet, a flag indicating
whether both TCP and UDP fields are set, and a type of
service (ToS) flag to specify Quality of Service levels.

Other characteristics of the data flows can also be deter-
mined some of which can be time-based characteristics. In
this example, as illustrated in FIG. 7, 13 other “character-
istics” 752 are determined, including flow 1D, channel 1D,
sub-channel ID, packet position number in the flow, time
since last frame in this flow, time since first frame in this
flow, average time for this flow, average time difference,
cumulative packet size in this flow, average packet size in
this flow, or flow rate (e.g., in number of packets per
second). In some embodiments, all 26 parameters listed
above (and described above under “Terms”) may be used in
training and testing. Other embodiments may use a subset of
these 26 parameters, or different parameters.

Process 700 and then proceeds to block 712 where it trains
one or more classifiers using features and characteristics of
the training data, as further described in reference to FIG. 8.

One example of train the classifier, a portion of the
training data is used with the 26 parameters. Because the
training data is “ground truth” the classifier is trained to
recognize data flows having certain parameters of the 26
parameters as being a mice flow or an elephant flow. In
normal real-time processing at a data center there is not
enough time to determine all 26 parameters, nor is there
enough time to use all of the packets (or a large number of
the packets) of a data flow to predict the classification. Thus
a goal during training can be to determine a subset of the 26
parameters that can be used to accurately predict the clas-
sification of a data flow using a few of the packets of the data
flow. The parameters are evaluated to determine which
parameters have the greatest influence on the accuracy of the

10

15

20

25

30

35

40

45

50

55

60

65

22

classifier. In other words, the parameters can be evaluated to
determine which of the parameters is most useful to cor-
rectly predict the correct classification of a data flow, using
as small of a number of packets as possible from a data flow.

Determining a subset of the parameters to accurately
predict the classification of the data flow can be done in
many ways. In one example, many iterations of training may
be performed each time removing one or more of the 26
parameters until there are only a small number of parameters
being used (e.g., one or two parameters) in each iteration. In
another example, information from a previously trained
classifier can be used as a starting point which may reduce
the number of parameters to train on if the data is similar. At
block 714, after a classifier is trained the process 700 tests
the classifier using the test data samples to determine the
accuracy of the classifier. The testing of the classifier may
include testing the accuracy of the classifier using a different
number of packets from each data flow being tested to
determine the number of packets that are sufficient to be
evaluated to achieve the desired accuracy, or to determine a
reasonable threshold number of packets to evaluate after
which evaluated more packets does little to increase the
accuracy of the classifier.

At block 716 the accuracy of the tested classifier is
evaluated. In some instances a classifier is evaluated to
determine if it is accurate enough while only processing a
certain number of packets (e.g., to meet a throughput or
“speed” requirement of the system). In some examples of
this process, the classifiers are trained in a “four-fold”
process. The classifiers are trained using a randomly selected
portion of the training data set, and tested using a randomly
selected portion of the testing data set. This process is then
repeated four times (hence “four-fold”). The accuracy is
averaged in the four cases and the best candidate algorithm
is chosen to be applied in the production (real network)
environment. If the accuracy or the speed of the classifier is
not sufficient, process 700 can move back along line 717 to
block 708 where the functionality in blocks 708, 710, 712,
714, and 716 is performed again and again. When the
classifier is deemed to be “accurate” at block 718 it can be
included in a classification policy. The classification policy
may include one or more classifiers, any of which may be
selected to classify data packets transmitted in the network.

At block 720, the process 700 provides a classification
policy to a network element to classify data flows. Providing
the classification policy may include storing the classifica-
tion policy in a computer readable medium accessible to the
network element classifying data flows.

The following additional features and concepts may be
applied to embodiments of the present invention:

1) Flow duration classes may be used instead of flow

labels.

2) Training may be performed in different modes:

A. In an example, the training is performed in one-shot,
where all the available training data is used to learn
a final set of classification rules. In such cases,
re-learning may be repeated periodically based on
information extracted in the previous period and by
discarding the earlier rules and replacing them by the
new rules, or

B. In an example, additional training of a classifier is
done “on-the-fly,” where classification rules are
updated as new data and labels become available. In
such cases, the update can happen when a new flow
is labelled or when many label flows are available,
and the rules are updated as a batch.

US 10,855,604 B2

23

3) The training data set may be obtained by splitting the
entire data set into two sets: a training set and a test set.
Splitting is done on a per-flow basis, i.e., all the packets
belonging to a flow are kept in either only in the
training set or the test set. Splitting is done randomly or
pseudo randomly (based on a starting seed). Training
and test set sizes (either in number of packets or
number of flows) need not be equal. e.g., 80/20 split
may be used.

4) It may be desirable (but not necessary) to keep the ratio
of flow labels (short/long/etc.) the same in each set.
This is achieved by (pseudo) randomly splitting each
subset of flows sharing the same label according to the
split percentage, e.g. 80/20. The training process may
use all the packets in each flow or may be limited to use
only the N packets (N being a user-specified value).

5) Once a machine learning algorithm is run on the
training set to learn classification rules, then the algo-
rithm is used on the test set to access the accuracy of the
model predicting the correct flow labels. The assess-
ment of accuracy may be based only on the first N
packets in a flow, N being a user specified value. The
assessment may be based on groupings of predicted and
real labels, e.g. {very-short, short} vs {medium, long,
very-long} groups.

6) In various examples of a classifier, the classifier may
use a machine learning algorithm of various types,
including, for example, a random-forest, decision-tree,
support vector machine, k-means or neural network.

7) In some embodiments, a machine learning algorithm
can be used as a predictor for the flow duration or for
total payload in the flow (instead of the class labels
derived thereof).

8) The flow labels extracted in real-time can be used a
variety of ways for better traffic engineering, whether
“better” means more efficient use of network resources
or better routing of time-sensitive traffic or both.

FIG. 8 is a schematic further illustrating an example of
aspects of a classification policy generator 140 that incor-
porates methods for determining one or more classifiers to
use to classify data flows from a particular network using
one or more parameters (features and/or characteristics). The
aspects illustrated in FIG. 8 may be used, for example, in
process 700 (FIG. 7). Although FIG. 8 illustrates one
example of generating classifiers using training data and test
data, and a number of parameters, other processes may also
be used to train one or more classifiers (or models) to
accurately classify a data flow to be a flow of a certain
category, and then the classifiers can be used in the claims
classification policy. Important aspects of the generating a
classification policy disclosed herein, no matter what spe-
cific training methodology is used to select classifiers and to
train the classifiers, include: pre-determining the classifica-
tion policy, determining the classification policy using train-
ing data that includes actual data flows that were transmitted
on the network where the classification policy will be
used/implemented, using test data that includes actual data
flows that were transmitted on the network with a classifi-
cation policy will be used/implemented, determining which
parameters from the numerous features and characteristics
disclosed herein are the most important (have the most
influence) for a particular classifier to have a high accuracy,
and determining which parameters for the numerous features
and characteristics disclosed herein are the most important
for a particular classifier to be able to accurately classify data
flows using a small number of data packets (e.g., 2-10)
during real-time operations on the network.

25

40

45

24

FIG. 8 shows a training portion 142 of the process where
a set of one or more classifiers that may be included in a
classification policy are selected, trained, and revised using
the training data 820 group of samples, and a test portion 143
where the “trained” classifiers are tested using the test data
822 group of samples. One or more Features 750 and/or
more or more Characteristics 752 may be input to the
training portion 142 and used in various combinations in
multiple iterations to optimize accuracy of the classifiers. In
the training portion 142 one or more classifiers (or model)
may be selected for training. For example, classifier/model
1, classifier/model 2 . . . classifier/model N. Each classifier
may be based on a different model of machine learning, for
example, a random-forest, a decision-tree, a support vector
machine, k-nearest neighbor, or a neural network. Different
classifiers may be included in the training portion 142
because different ones of the various classifiers may have a
higher performance based on the type of data transmitted
through a network that is represented in the training data
820, and the only way to determine which one is better for
that particular type of data is through the a training and
testing process.

In one example of training a classifier, for each classifier/
model a set of parameters can be iteratively selected and the
classifier/model is trained to classify data packets of the
training data 820. For example, for classifier/model 1 param-
eter set L. 812 is selected as a starting set for training, for
classifier/model 2 parameter set [814 is selected, and for
classifier/'model N parameter set P 816 is selected. The
parameter sets selected for each of the different classifier/
models may be (initially) different or the same. For each
classifier, varying parameter sets can be used to train the
classifier and determine which of the most important param-
eters for the data being trained on and for that particular
classifier. The purpose of the training is to configure the
classifier/model to be able to predict the classification of
data flows in the training data 820 using only a small number
of the parameters (e.g., as few as possible) and using only a
few of the data packets (e.g., as few as possible) of a
particular data flow. Because several classifier/model may
be selected for testing, the large number of parameters that
may be used for training, and the (potentially) thousands of
data flows in the training data 820, a large number of
iterations, the training portion 142 may take many hours to
complete.

For each classifier being trained, once an optimized
parameter set has been determined for the classifier and that
particular training data 820, the classifiers are tested in the
testing portion 143 using test data 822. For example, the
optimized parameter set X was determined for classifier/
model 1, the optimized parameter set Y was determined for
classifier/model 2, and the optimized parameter set 7 was
determined for classifier/model N. using the same test data
822, each classifier can be used to predict if the data flows
in the test data 822 are mice or elephant flows. The results
of these classifications are compared with “ground truth” in
the accuracy of each of the classifiers is determined. If a
performance metric the classifiers is deemed to be below the
threshold, the process may loop back 717 to the training
portion 142 additional training of the classifiers, which may
involve revising the parameters that are used for the classi-
fier predictions. In various embodiments, the performance
metric may be that the accuracy of the classifiers is too low,
the speed of the classifiers is too slow, or too many packets
are needed to make accurate enough predictions (which may
also be an indication that the speed of the classifiers to slow).
Once a classification policy has been determined it can be

US 10,855,604 B2

25

provided 720 to a network element the processes data
packets on the network from which the training data in the
test data came from.

The information in the classification policy may be imple-
mented in various forms. For example, if the selected one or
more classifiers of a classification policy are fast enough to
perform real-time operational data flow classifications, the
classifiers themselves (or portions thereof) can be imple-
mented to perform the data flow classification. In some
examples, a classifier may determine that only a small subset
(e.g., 1,2,3,4, 5, or 6) of parameters need to be calculated
to accurately classify a particular type of data on a network.
In such cases, the classification policy may only include
instructions to calculate the small subset of parameters in
any thresholds associated with determining the classification
of the data flow based on the calculation of the parameters.
In one example, a classifier may determine that only a single
parameter is needed to be calculated, and the cancellation
policy will be to calculate that parameter and it determine
the classification of the data flow based on a threshold
associate. For example, in some instances the single param-
eter may be the flow rate, the time since first frame in this
flow, the time since last frame in this flow, etc.).

FIG. 9 is an example of a computer system that may be
used to implement the classification functionality described
herein. Computer system 900 can be, or be part of, a network
or a network element, for example, in a data center. Com-
puter system 900 can include a bus 902 or other communi-
cation mechanism for communicating information, and a
hardware processor, or multiple processors, 904 coupled
with bus 902 for processing information. Hardware proces-
sor(s) 904 may be, for example, one or more general purpose
microprocessors. The hardware processor(s) 904 include
memory 905. In some examples, the functionality the com-
ponents illustrated in the computer system 900 can be
implemented in a single chip (e.g., an ASIC) and the
classification policy is stored in memory and/or in circuitry,
for example, memory 905.

Computer system 900 also includes a main memory 906,
such as a random access memory (RAM), cache and/or other
dynamic storage devices, coupled to bus 902 for storing
information and instructions to be executed by processor
904. Main memory 906 also may be used for storing
temporary variables or other intermediate information dur-
ing execution of instructions to be executed by processor
904. Such instructions, when stored in storage media acces-
sible to processor 904, including on memory 905 integrated
on a processor chip, render computer system 900 into a
special-purpose machine that is customized to perform the
operations specified in the instructions. Computer system
900 further includes a read only memory (ROM) 908 or
other static storage device coupled to bus 902 for storing
static information and instructions for processor 904. A
storage device 910, such as a magnetic disk, optical disk, or
USB thumb drive (Flash drive), etc., is provided and coupled
to bus 902 for storing information and instructions.

Computer system 900 may be coupled via bus 902 to a
display 912, such as a cathode ray tube (CRT) or LCD
display (or touch screen), for displaying information to a
network operator. An input device 914, including alphanu-
meric and other keys, is coupled to bus 902 for communi-
cating information and command selections to processor
904. Another type of user input device is cursor control 916,
such as a mouse, a trackball, or cursor direction keys for
communicating direction information and command selec-
tions to processor 904 and for controlling cursor movement
on display 912 by a network operator.

10

15

20

25

30

35

40

45

50

55

60

65

26

Computing system 900 may include a user interface
module to implement a GUI that may be stored in a mass
storage device as computer executable program instructions
that are executed by the computing device(s). Computer
system 900 may, as described below, implement the tech-
niques described herein using customized hard-wired logic,
one or more ASICs or FPGAs, firmware and/or program
logic which in combination with the computer system causes
or programs computer system 900 to be a special-purpose
machine. According to one embodiment, the techniques
herein are performed by computer system 900 in response to
processor(s) 904 executing one or more sequences of one or
more computer readable program instructions contained in
main memory 906. Such instructions may be read into main
memory 906 from another storage medium, such as storage
device 910. Execution of the sequences of instructions
contained in main memory 906 causes processor(s) 904 to
perform the process steps described herein. In alternative
embodiments, hard-wired circuitry may be used in place of
or in combination with software instructions.

Various forms of computer readable storage media may be
involved in carrying one or more sequences of one or more
computer readable program instructions to processor 904 for
execution. For example, the instructions may initially be
carried on a magnetic disk or solid state drive of a remote
computer. The remote computer can load the instructions
into its dynamic memory and send the instructions over a
telephone line using a modem. A modem local to computer
system 900 can receive the data on the telephone line and
use an infra-red transmitter to convert the data to an infra-red
signal. An infra-red detector can receive the data carried in
the infra-red signal and appropriate circuitry can place the
data on bus 902. Bus 902 carries the data to main memory
906, from which processor 904 retrieves and executes the
instructions. The instructions received by main memory 906
may optionally be stored on storage device 910 either before
or after execution by processor 904.

Computer system 900 also includes a communication
interface 918 coupled to bus 902. Communication interface
918 provides a two-way data communication coupling to a
network link 920 that is connected to a local network 922.
For example, communication interface 918 may be an
integrated services digital network (ISDN) card, cable
modem, satellite modem, or a modem to provide a data
communication connection to a corresponding type of tele-
phone line. As another example, communication interface
918 may be a local area network (LAN) card to provide a
data communication connection to a compatible LAN (or
WAN component to communicated with a WAN). Wireless
links may also be implemented. In any such implementation,
communication interface 918 sends and receives electrical,
electromagnetic or optical signals that carry digital data
streams representing various types of information.

Network link 920 typically provides data communication
through one or more networks to other data devices. For
example, network link 920 may provide a connection
through local network 922 to a host computer 924 or to data
equipment operated by an Internet Service Provider (ISP)
926. ISP 926 in turn provides data communication services
through the world wide packet data communication network
now commonly referred to as the “Internet” 928. Local
network 922 and Internet 928 both use electrical, electro-
magnetic or optical signals that carry digital data streams.
The signals through the various networks and the signals on
network link 920 and through communication interface 918,
which carry the digital data to and from computer system
900, are example forms of transmission media. Computer

US 10,855,604 B2

27

system 900 can send messages and receive data, including
program code, through the network(s), network link 920 and
communication interface 918. In the Internet example, a
server 930 might transmit a requested code for an applica-
tion program through Internet 928, ISP 926, local network
922 and communication interface 918. The received code
may be executed by processor 904 as it is received, and/or
stored in storage device 910, or other non-volatile storage
for later execution.

In various embodiments certain functionality may be
accessible by a user through a web-based viewer (such as a
web browser), or other suitable software program), and the
user can install a predetermined classification policy, or
update a predetermined classification policy, using these
means. In such implementations, the user interface may be
generated by a server computing system and transmitted to
a web browser of the user (e.g., running on the user’s
computing system 900). Alternatively, data (e.g., user inter-
face data) necessary for generating the user interface may be
provided by the server computing system to the browser,
where the user interface may be generated (e.g., the user
interface data may be executed by a browser accessing a web
service and may be configured to render the user interfaces
based on the user interface data). The user may then interact
with the user interface through the web-browser. User inter-
faces of certain implementations may be accessible through
one or more dedicated software applications. In certain
embodiments, one or more of the computing devices and/or
systems of the disclosure may include mobile computing
devices, and user interfaces may be accessible through such
mobile computing devices (for example, smartphones and/or
tablets).

FIGS. 10, 11, and 12 illustrate examples of data traffic of
a first type, a second type, and a third type (respectively) that
may be processed by a data center or other network, or
network element, according to some embodiments. These
examples of data traffic can be used to determine a system/
processes to classify data flows, as described herein. Spe-
cifically, as shown in FIG. 10 for Type 1 data traffic of
33,635 flows, the lower bar graph shows the total bytes
transmitted as a function of time. The middle graph shows
the number of packets transmitted as a function of time. An
upper graph shows the total number of flows transmitted as
a function of time. For this Type 1 data traffic the short flows
make up 60% of the flows, 42% of the packets, and 13% of
the total bytes. The long flows make up 32% of the flows
58% of the packets and 87% of the total bytes transmitted.
FIG. 11, for Type 2 data traffic having 394,845 flows, shows
a lower graph showing the total bytes transmitted as a
function of time, a middle graph showing the number of
packets transmitted as a function of time, and an upper graph
showing the total number of flows transmitted as a function
of time. For this Type 2 data traffic the short flows make up
79% of the flows, 16% of the packets, and only 6% of the
total bytes. The long flows make up 21% of the flows 84%
of the packets and 94% of the total bytes transmitted. FIG.
12, for Type 3 data traffic having 331,561 flows, shows a
lower graph showing the total bytes transmitted as a function
of time, a middle graph showing the number of packets
transmitted as a function of time, and an upper graph
showing the total number of flows transmitted as a function
of time. For this Type 3 data traffic the short flows make up
81% of the flows, 33% of the packets, and only 7% of the
total bytes. The long flows make up 19% of the flows 67%
of the packets and 93% of the total bytes transmitted.

FIGS. 13 and 14 illustrate examples of the different results
that can be obtained for long flows using different algorithms

30

40

45

50

28

(classifiers) for the three different data traffic types illus-
trated in FIGS. 10-12. In FIG. 13 the plots show the
prediction accuracy for long flows of the three different data
types grouped into three different ranges, greater than 100
ms (“square”), greater than 200 ms (“circle”) and greater
than one second (“x”). In FIG. 14 the plots show the
prediction accuracy for short flows of the three different data
types grouped into three different ranges, less than 100 ms
(“square”), less than 200 ms (“circle”) and less than one
second (“x).

FIG. 15 illustrates an example of different data accuracies
for different classifiers (or algorithms) A, B, and C based on
the data traffic Type 1, Type 2, and Type 3, and illustrates an
example where the best classifier for one type of data may
not be the best classifier for another type of data. The
example classifiers A, B, and C were determined based on
evaluating sample data from a particular network. In imple-
menting a classification policy that includes one or several
classifiers, due to the differences in the data traffic for any
particular network, sample data from that particular network
should be used to determine the best classifiers to use and
which parameters to use for those classifiers.

In this example, the classifier C was determined to have
the highest accuracy for classifying data flows for data traffic
of Type 1 at 85.5%, classifier B was determined to have the
highest accuracy for classifying data flows for data traffic of
Type 2 at 83.3%, and classifier A was determined to have the
highest accuracy for classifying data flows for traffic of Type
3 at 99.9%. However, if classifier C is selected to be used
(because the data traffic is Type 1 and classifier C has the
highest accuracy for Type 1 data), and the data type pattern
changes to Type 2, the accuracy of the data flow classifica-
tion decreases to 83.1%. If the data type pattern changes to
Type 3, the accuracy of the data flow classification increases
to 97.3%. The accuracy of classifiers B and C also change
with the type of data traffic. The accuracy for classifier B
increases to 84.8% for data traffic of Type 1, and to 84.4%
for data traffic of Type 3. The accuracy for classifier C
decreases from 99.9% for data traffic of Type 3 to 76.8% for
data traffic of Type 1, and to 71.3% for data traffic of Type
2.

Accordingly, it may be advantageous to have a classifi-
cation policy that includes multiple classifiers that can be
selected for classifying data flows based on certain criteria.
Using the example above, if it is determined that the data
traffic on a network is Type 1, classifier C should be selected.
If the data traffic changes to Type 2, classifier B should be
selected. And if the data traffic changes to Type 3, classifier
C should be selected. In some embodiments, other processes
on the network can be used to monitor the data traffic to
determine what type of data traffic the network is experi-
encing, and this information can be used to select a particu-
lar classifier in a classification policy to best handle the data
traffic being experienced at that time.

Examples of Certain Embodiments

Embodiment A is a method of classifying data flows being
communicated on a network by one or more network
element(s), the method comprising: receiving a plurality of
packets from the network, each packet having header infor-
mation; segregating the plurality of packets into a plurality
of data flows based at least in part on the respective header
information of each packet; for each data flow: selecting a
subset of the packets in the respective data flow; classifying
by a network element the data flow as one of at least two
categories of data flows using one or more parameters

US 10,855,604 B2

29

determined from the subset of packets and using a prede-
termined classification policy for classitying data flows, said
classification policy including one or more classifiers each
defined using parameters determined from packets in a
plurality of sample data flows, the sample data flows being
previously transmitted on the network; and routing the data
flow in the network based on its respective classification.
Embodiment B includes Embodiment A, wherein the
number of sample data flows is greater than one hundred
thousand data flows. Embodiment C includes Embodiment
A, wherein the number of sample data flows is greater than
ten thousand data flows. Embodiment D includes any one of
Embodiments A-C, further comprising storing the predeter-
mined classification policy on the network element.
Embodiment E includes any one of Embodiments A-E,
further comprising generating the predetermined classifica-
tion policy. Embodiment F includes Embodiment E, wherein
generating the predetermined classification policy comprises
obtaining samples of packets previously transmitted on the
network; grouping the samples of packets into data flows;
separating the data flows into training data and test data;
determining one or more parameters from the training data;
training one or more classifiers using the one or more
parameters of the training data; testing the one or more
classifiers using the test data to determine an accuracy of
each classifier; determining if each classifier is accurate, and
in response to determining a classifier is not accurate,
repeating parts (v)-(vi) of the method; and providing the
classification policy including the one or more classifiers to
the network element. Embodiment G includes any one of
Embodiments A-F, wherein the one or more parameters
includes one of more features, each feature being a time-
independent feature determined using respective packet
information in a data flow. Embodiment H includes any one
or Embodiments A-G, wherein the one or more features
include at least one or the following: frame number, proto-
col, source IP address, destination IP address, source port
number, destination port number, sequence number, quality
of service (QoS), a flag indicting whether packet can be
fragmented, flag indicting whether one of more fragments
follow, position of fragment in original packet, a flag indi-
cating whether both TCP and UDP fields are set, or a type
of service (ToS) flag to specify Quality of Service levels.
Embodiment I includes any one of Embodiments A-H,
wherein the one or more parameters includes one of more
characteristics. Embodiment J includes Embodiment I,
wherein the one or more characteristics includes time-based
characteristics that are calculated using respective packet
information in a data flow. Embodiment K includes Embodi-
ment I, wherein the one or more characteristics include at
least one of the following: flow 1D, channel ID, sub-channel
1D, packet position number in the flow, time since last frame
in this flow, time since first frame in this flow, average time
for this flow, average time difference, cumulative packet size
in this flow, average packet size in this flow, or flow rate.
Embodiment L includes any one of Embodiments A-K,
wherein the predetermined classification policy includes at
least two classifiers. Embodiment M includes Embodiment
L, further comprising selecting one of the at least two
classifiers to classify data flows based on an input received
by the network element. Embodiment N includes Embodi-
ment M, wherein the input is based on a pre-set traffic
engineering policy. Embodiment O includes Embodiment N,
wherein the pre-set engineering policy dictates the use of a
certain classifier based on the time of day or day of the week.
Embodiment P includes any one of Embodiments A-O,
wherein the predetermined classification policy includes

10

15

20

25

30

35

40

45

50

55

60

65

30

three or more classifiers. Embodiment Q includes any one of
Embodiments A-P, further comprising performing one or
more network actions based on the classification of the data
flows and the predetermined classification policy. Embodi-
ment R includes Embodiment Q, wherein the one or more
network actions include assigning real-time quality of ser-
vice (QoS) to some or all flows. Embodiment 5 includes
Embodiment Q, wherein the one or more network actions
include routing data flows to different channels. Embodi-
ment T includes Embodiment Q, wherein the one or more
network actions include input to flow tables (SDN).
Embodiment U includes Embodiment Q, wherein the one or
more network actions include routing long data flows to
dedicated links. Embodiment V includes Embodiment Q,
wherein the one or more network actions include routing
long data flows to photonic layer. Embodiment W includes
Embodiment Q, wherein the one or more network actions
include routing data flows to P2P wireless networks.
Embodiment X includes Embodiment Q, wherein the one or
more network actions include adjusting buffer settings.
Embodiment Y includes Embodiment Q, wherein the one or
more network actions include managing streaming param-
eters. Embodiment Z includes Embodiment QQ, wherein the
one or more network actions include managing compres-
sion. Embodiment AA includes Embodiment Q, wherein the
one or more network actions include providing input to data
flow traffic engineering. Embodiment AB includes Embodi-
ment A, wherein said one or more parameters includes at
least one of the following time independent features: frame
number, protocol, source IP address, destination IP address,
source port number, destination port number, sequence
number, quality of service (QoS), a flag indicting whether
packet can be fragmented, flag indicting whether one of
more fragments follow, position of fragment in original
packet, a flag indicating whether both TCP and UDP fields
are set, or a type of service (ToS) flag to specify Quality of
Service levels. Embodiment AC includes Embodiment A,
wherein said one or more parameters includes at least one of
the following characteristics: flow ID, channel 1D, sub-
channel ID, packet position number in the flow, time since
last frame in this flow, time since first frame in this flow,
average time for this flow, average time difference, cumu-
lative packet size in this flow, average packet size in this
flow, or flow rate. Embodiment AD includes any one of
Embodiments A-AC, wherein segregating the plurality of
packets into a plurality of data flows includes assigning
packets having the same 5-tuple data in their header into the
same data flow. Embodiment AD includes any one of
Embodiments A-AC, wherein segregating the plurality of
packets into a plurality of data flows includes separating
packets into different data flows based at least in part on a
predetermined time between two packets that have the same
S-tuple data.

Embodiment AF is a method of classifying data flows
being communicated on a network by one or more network
element(s), the method comprising: creating, from a plural-
ity of sample packets, a table including information of
packet timestamps and pre-defined packet header fields, the
plurality of sample packets being previously transmitted on
the network; grouping the plurality of sample packets into
data flows based at least in part on information in the table;
assigning flow identifiers to each of the data flows; grouping
the data flows into a training portion and a testing portion;
determining one or more parameters having one or more
features and/or one or more characteristics of the training
data flows; determining a classifier to predict flow labels,
including iteratively training and testing the classifier, using

US 10,855,604 B2

31

the training portion and the one or more parameters to train
each classifier, and the testing portion to determine an
accuracy of the classifier; generating a classification policy
that includes the classifier to classify data flows on the
network; and providing the classification policy to be used
by a network element to classify data flows. Embodiment
AG includes Embodiment AF further comprising storing the
classification policy in at least one non-transitory computer
medium that is accessible by a network element that clas-
sifies data flows on the network.

Embodiment AH is a method of classifying data flows
being communicated on a network by one or more network
element(s), the method comprising: obtaining samples of
packets from the network; grouping the samples of packets
into data flows; separating the data flows into training data
and test data; training one or more classifiers to classify data
flows using one or more parameters of the training data and
the training data as ground truth; determining accuracy or
the one or more classifiers using the test data; in response to
determining a classifier is not accurate, repeating portions
(iv)-(v) of the method; and providing the classification
policy including the one or more classifiers to be used to
classify data flows on the network. Embodiment Al includes
embodiment AH, further comprising storing the classifica-
tion policy in at least one non-transitory computer medium
that is accessible by the network element that is classitying
data flows on the network. Embodiment AJ includes any one
of Embodiments AH and Al, wherein generating a classifier
for the classification policy comprises: determining an initial
set of parameters including a plurality of features and a
plurality of characteristics from the training data; using a
selected classifier model and the initial set of parameters for
respective data flows in the training data, classify the data
flows in the training data to one of at least two categories of
data flows and determine the accuracy of the classifications
of the respective data flows using the test data; generating
one or more revised sets of parameters by changing one or
more of the features and characteristics of the initial set of
parameters; using the selected classifier and the plurality of
revised sets of parameters for respective data flows in the
training data, classify the data flows in the training data to
one of at least two categories of data flows and determine the
respective accuracy of the classifier for classifying the data
flows in the test data using each revised set of parameters;
repeating steps (iii) and (iv) to improve the accuracy of the
classifier to determine a final set of one or more parameters
for the selected classifier, the final set of parameter being one
of the revised sets of parameters; and including the selected
classifier and the final set of parameters in the classification
policy. Embodiment AK includes any one of Embodiments
AH-AK, wherein the final set of one or more parameters
provide the highest accuracy of the selected classifier to
classify the test data within a certain period of time.

Embodiment AL is a system of generating a classification
policy to classify data flows being communicated on a
network by one or more network element(s), the system
comprising: one or more non-transitory computer storage
mediums configured to store at least: samples of packets that
were previously transmitted on the network; and computer-
executable instructions; one or more computer hardware
processors in communication with the one or more non-
transitory computer storage mediums, the one or more
computer hardware processors configured to execute the
computer-executable instructions to at least: group the
samples of packets into data flows; separate the data flows
into training data and test data; train one or more classifiers
to classify data flows using one or more parameters of the

10

25

30

40

45

55

32

training data and the training data as ground truth; determine
accuracy or the one or more classifiers using the test data,
and iteratively repeat portions (iii)-(iv) to improve the
accuracy of the classifier.

System Implementation

Various embodiments of the present disclosure may be a
system, a method, and/or a computer program product at any
possible technical detail level of integration. The computer
program product may include a computer readable storage
medium (or mediums) having computer readable program
instructions thereon for causing a processor to carry out
aspects of the present disclosure. For example, the function-
ality described herein may be performed as software instruc-
tions are executed by, and/or in response to software instruc-
tions being executed by, one or more hardware processors
and/or any other suitable computing devices. The software
instructions and/or other executable code may be read from
a computer readable storage medium (or mediums).

The computer readable storage medium can be a tangible
device that can retain and store data and/or instructions for
use by an instruction execution device. The computer read-
able storage medium may be, for example, but is not limited
to, an electronic storage device (including any volatile
and/or nonvolatile electronic storage devices), a magnetic
storage device, an optical storage device, an electromagnetic
storage device, a semiconductor storage device, or any
suitable combination of the foregoing. A non-exhaustive list
of more specific examples of the computer readable storage
medium includes the following: a portable computer dis-
kette, a hard disk, a solid state drive, a random access
memory (RAM), a read-only memory (ROM), an erasable
programmable read-only memory (EPROM or Flash
memory), a static random access memory (SRAM), a por-
table compact disc read-only memory (CD-ROM), a digital
versatile disk (DVD), a memory stick, a floppy disk, a
mechanically encoded device such as punch-cards or raised
structures in a groove having instructions recorded thereon,
and any suitable combination of the foregoing. A computer
readable storage medium, as used herein, is not to be
construed as being transitory signals per se, such as radio
waves or other freely propagating electromagnetic waves,
electromagnetic waves propagating through a waveguide or
other transmission media (e.g., light pulses passing through
a fiber-optic cable), or electrical signals transmitted through
a wire.

Computer readable program instructions described herein
can be downloaded to respective computing/processing
devices from a computer readable storage medium or to an
external computer or external storage device via a network,
for example, the Internet, a local area network, a wide area
network and/or a wireless network. The network may com-
prise copper transmission cables, optical transmission fibers,
wireless transmission, routers, firewalls, switches, gateway
computers and/or edge servers. A network adapter card or
network interface in each computing/processing device
receives computer readable program instructions from the
network and forwards the computer readable program
instructions for storage in a computer readable storage
medium within the respective computing/processing device.

Computer readable program instructions (as also referred
to herein as, for example, “code,” “instructions,” “module,”
“application,” “software application,” and/or the like) for
carrying out operations of the present disclosure may be
assembler instructions, instruction-set-architecture (ISA)
instructions, machine instructions, machine dependent
instructions, microcode, firmware instructions, state-setting
data, configuration data for integrated circuitry, or either

US 10,855,604 B2

33

source code or object code written in any combination of one
or more programming languages, including an object ori-
ented programming language such as Java, C++, or the like,
and procedural programming languages, such as the “C”
programming language or similar programming languages.
Computer readable program instructions may be callable
from other instructions or from itself, and/or may be invoked
in response to detected events or interrupts. Computer
readable program instructions configured for execution on
computing devices may be provided on a computer readable
storage medium, and/or as a digital download (and may be
originally stored in a compressed or installable format that
requires installation, decompression or decryption prior to
execution) that may then be stored on a computer readable
storage medium. Such computer readable program instruc-
tions may be stored, partially or fully, on a memory device
(e.g., a computer readable storage medium) of the executing
computing device, for execution by the computing device.
The computer readable program instructions may execute
entirely on a user’s computer (e.g., the executing computing
device), partly on the user’s computer, as a standalone
software package, partly on the user’s computer and partly
on a remote computer or entirely on the remote computer or
server. In the latter scenario, the remote computer may be
connected to the user’s computer through any type of
network, including a local area network (LAN) or a wide
area network (WAN), or the connection may be made to an
external computer (for example, through the Internet using
an Internet Service Provider). In some embodiments, elec-
tronic circuitry including, for example, programmable logic
circuitry, field-programmable gate arrays (FPGA), or pro-
grammable logic arrays (PLA) may execute the computer
readable program instructions by utilizing state information
of'the computer readable program instructions to personalize
the electronic circuitry, in order to perform aspects of the
present disclosure.

Aspects of the present disclosure are described herein
with reference to flowchart illustrations and/or block dia-
grams of methods, apparatus (systems), and computer pro-
gram products according to embodiments of the disclosure.
It will be understood that each block of the flowchart
illustrations and/or block diagrams, and combinations of
blocks in the flowchart illustrations and/or block diagrams,
can be implemented by computer readable program instruc-
tions.

These computer readable program instructions may be
provided to a processor of a general purpose computer,
special purpose computer, or other programmable data pro-
cessing apparatus to produce a machine, such that the
instructions, which execute via the processor of the com-
puter or other programmable data processing apparatus,
create means for implementing the functions/acts specified
in the flowchart and/or block diagram block or blocks. These
computer readable program instructions may also be stored
in a computer readable storage medium that can direct a
computer, a programmable data processing apparatus, and/
or other devices to function in a particular manner, such that
the computer readable storage medium having instructions
stored therein comprises an article of manufacture including
instructions which implement aspects of the function/act
specified in the flowchart(s) and/or block diagram(s) block
or blocks.

The computer readable program instructions may also be
loaded onto a computer, other programmable data process-
ing apparatus, or other device to cause a series of operational
steps to be performed on the computer, other programmable
apparatus or other device to produce a computer imple-

25

40

45

55

34

mented process, such that the instructions which execute on
the computer, other programmable apparatus, or other
device implement the functions/acts specified in the flow-
chart and/or block diagram block or blocks. For example,
the instructions may initially be carried on a magnetic disk
or solid state drive of a remote computer. The remote
computer may load the instructions and/or modules into its
dynamic memory and send the instructions over a telephone,
cable, or optical line using a modem. A modem local to a
server computing system may receive the data on the
telephone/cable/optical line and use a converter device
including the appropriate circuitry to place the data on a bus.
The bus may carry the data to a memory, from which a
processor may retrieve and execute the instructions. The
instructions received by the memory may optionally be
stored on a storage device (e.g., a solid state drive) either
before or after execution by the computer processor.

The diagrams in the Figures illustrate the architecture,
functionality, and operation of possible implementations of
systems, methods, and computer program products accord-
ing to various embodiments of the present disclosure. In this
regard, each block in the flowchart or block diagrams may
represent a module, segment, or portion of instructions,
which comprises one or more executable instructions for
implementing the specified logical function(s). In some
alternative implementations, the functions noted in the
blocks may occur out of the order noted in the Figures. For
example, two blocks shown in succession may, in fact, be
executed substantially concurrently, or the blocks may
sometimes be executed in the reverse order, depending upon
the functionality involved. In addition, certain blocks may
be omitted in some implementations. The methods and
processes described herein are also not limited to any
particular sequence, and the blocks or states relating thereto
can be performed in other sequences that are appropriate.

It will also be noted that each block of the block diagrams
illustration, and combinations of blocks in the block dia-
grams and/or flowchart illustration, can be implemented by
special purpose hardware-based systems that perform the
specified functions or acts or carry out combinations of
special purpose hardware and computer instructions. For
example, any of the processes, methods, algorithms, ele-
ments, blocks, applications, or other functionality (or por-
tions of functionality) described in the preceding sections
may be embodied in, and/or fully or partially automated via,
electronic hardware such application-specific processors
(e.g., application-specific integrated circuits (ASICs)), pro-
grammable processors (e.g., field programmable gate arrays
(FPGAs)), application-specific circuitry, and/or the like (any
of which may also combine custom hard-wired logic, logic
circuits, ASICs, FPGAs, etc. with custom programming/
execution of software instructions to accomplish the tech-
niques).

Any of the above-mentioned processors, and/or devices
incorporating any of the above-mentioned processors, may
be referred to herein as, for example, “computers,” “com-
puter devices,” “computing devices,” “hardware computing
devices,” “hardware processors,” “processing units,” and/or
the like. Computing devices of the above-embodiments may
generally (but not necessarily) be controlled and/or coordi-
nated by operating system software, such as Mac OS, iOS,
Android, Chrome OS, Windows OS (e.g., Windows XP,
Windows Vista, Windows 7, Windows 8, Windows 10,
Windows Server, etc.), Windows CE, Unix, Linux, SunOS,
Solaris, Blackberry OS, VxWorks, or other suitable operat-
ing systems. In other embodiments, the computing devices
may be controlled by a proprietary operating system. Con-

US 10,855,604 B2

35

ventional operating systems control and schedule computer
processes for execution, perform memory management,
provide file system, networking, I/O services, and provide a
user interface functionality, such as a graphical user inter-
face (“GUI”), among other things.

Many variations and modifications may be made to the
above-described embodiments, the elements of which are to
be understood as being among other acceptable examples.
All such modifications and variations are intended to be
included herein within the scope of this disclosure. The
foregoing description details certain embodiments. It will be
appreciated, however, that no matter how detailed the fore-
going appears in text, the systems and methods can be
practiced in many ways. As is also stated above, it should be
noted that the use of particular terminology when describing
certain features or aspects of the systems and methods
should not be taken to imply that the terminology is being
re-defined herein to be restricted to including any specific
characteristics of the features or aspects of the systems and
methods with which that terminology is associated.

Conditional language, such as, among others, “can,”
“could,” “might,” or “may,” unless specifically stated oth-
erwise, or otherwise understood within the context as used,
is generally intended to convey that certain embodiments
include, while other embodiments do not include, certain
features, elements, and/or steps. Thus, such conditional
language is not generally intended to imply that features,
elements and/or steps are in any way required for one or
more embodiments or that one or more embodiments nec-
essarily include logic for deciding, with or without user
input or prompting, whether these features, elements and/or
steps are included or are to be performed in any particular
embodiment.

The term “substantially” when used in conjunction with
the term “real-time” forms a phrase that will be readily
understood by a person of ordinary skill in the art. For
example, it is readily understood that such language will
include speeds in which no or little delay or waiting is
discernible, or where such delay is sufficiently short so as not
to be disruptive, irritating, or otherwise vexing to a user.

Conjunctive language such as the phrase “at least one of
X, Y, and Z,” or “at least one of X, Y, or Z,” unless
specifically stated otherwise, is to be understood with the
context as used in general to convey that an item, term, etc.
may be either X, Y, or Z, or a combination thereof. For
example, the term “or” is used in its inclusive sense (and not
in its exclusive sense) so that when used, for example, to
connect a list of elements, the term “or” means one, some,
or all of the elements in the list. Thus, such conjunctive
language is not generally intended to imply that certain
embodiments require at least one of X, at least one of Y, and
at least one of Z to each be present.

The term “a” as used herein should be given an inclusive
rather than exclusive interpretation. For example, unless
specifically noted, the term “a” should not be understood to
mean “exactly one” or “one and only one”; instead, the term
“a” means “one or more” or “at least one,” whether used in
the claims or elsewhere in the specification and regardless of
uses of quantifiers such as “at least one,” “one or more,” or
“a plurality” elsewhere in the claims or specification.

The term “comprising” as used herein should be given an
inclusive rather than exclusive interpretation. For example,
a general purpose computer comprising one or more pro-
cessors should not be interpreted as excluding other com-
puter components, and may possibly include such compo-
nents as memory, input/output devices, and/or network
interfaces, among others.

10

15

20

25

30

35

40

45

50

55

60

65

36

While the above detailed description has shown,
described, and pointed out novel features as applied to
various embodiments, it may be understood that various
omissions, substitutions, and changes in the form and details
of the devices or processes illustrated may be made without
departing from the spirit of the disclosure. As may be
recognized, certain embodiments of the inventions described
herein may be embodied within a form that does not provide
all of the features and benefits set forth herein, as some
features may be used or practiced separately from others.
The scope of certain inventions disclosed herein is indicated
by the appended claims rather than by the foregoing descrip-
tion. All changes which come within the meaning and range
of'equivalency of the claims are to be embraced within their
scope.

What is claimed is:
1. A method of predicting, in real-time, the classification
of data flows, at the beginning of each data flow, being
communicated on a network by one or more network
element(s), into categories based on a type of data flow, the
type indicative of a time duration of the data flow or the
payload of the data flow, the method comprising:
generating a classification policy for classitying data
flows into categories based on the type of each data
flow, including
(1) obtaining samples of packets previously transmitted on
the network,
(i) grouping the samples of packets into data flows based
at least in part on the respective 5-tuple header infor-
mation of each packet,
(iii) separating the data flows into training data and test
data,
(iv) determining one or more parameters from the training
data,
(v) training classifiers to categorize the data flows in the
training data into categories using the one or more
parameters of the training data, each of the categories
associated with data flows of different types,
(vi) testing the classifiers using the data flows in the test
data to determine an accuracy of each classifier,
(vii) determining if each classifier is accurate, and in
response to determining a classifier is not accurate,
repeating parts (v)-(vi) of the method, and
(viii) providing the classification policy including a clas-
sifier that was determined to be accurate to one or more
network element(s),
receiving a plurality of packets from the network, each
packet having header information comprising a source
IP address, a destination IP address, source port, des-
tination port, and a type of transfer protocol;
once a number of the plurality of packets have been
identified as belonging to a data flow based on the
header information, for each data flow:
selecting a subset of ten or less packets in the data flow;
determining the one or more parameters from the
subset of packets;

based on the determined parameters, predicting the
classification, by a network element, of the data flow
as one of at least two categories of data flows using
the classification policy each of the at least two
categories indicative of a different type of data flow;
and

routing the data flow in the network based on its
respective category classification indicative of the
duration of the data flow or the payload of the data
flow.

US 10,855,604 B2

37

2. The method of claim 1, wherein the number of sample
data flows is greater than one hundred thousand data flows.

3. The method of claim 1, wherein the number of sample
data flows is greater than ten thousand data flows.

4. The method of claim 1, further comprising storing the
classification policy on a network element.

5. The method of claim 1, wherein the one or more
parameters includes one of more features, each feature being
a time-independent feature determined using respective
packet information in a data flow.

6. The method of claim 5, wherein the one or more
features include at least one or the following:

frame number, protocol, source IP address, destination [P

address, source port number, destination port number,
sequence number, quality of service (QoS), a flag
indicating whether packet can be fragmented, flag
indicating whether one of more fragments follow, posi-
tion of fragment in original packet, a flag indicating
whether both TCP and UDP fields are set, or a type of
service (ToS) flag to specify Quality of Service levels.

7. The method of claim 1, wherein the one or more
parameters includes one of more characteristics.

8. The method of claim 7, wherein the one or more
characteristics includes time-based characteristics that are
calculated using respective packet information in a data
flow.

9. The method of claim 7, wherein the one or more
characteristics include at least one of the following: flow 1D,
channel ID, sub-channel ID, packet position number in the
flow, time since last frame in this flow, time since first frame
in this flow, average time for this flow, average time differ-
ence, cumulative packet size in this flow, average packet size
in this flow, or flow rate.

10. The method of claim 1, wherein the predetermined
classification policy includes at least two classifiers.

11. The method of claim 1, further comprising performing
one or more network actions based on the classification of
the data flows and the predetermined classification policy.

12. The method of claim 11, wherein the one or more
network actions include routing data flows to different
channels.

13. The method of claim 11, wherein the one or more
network actions include routing long data flows to dedicated
links.

14. A method of classifying data flows, being communi-
cated on a network by one or more network element(s), into
categories based on a type of data flow, the type indicative
of a time duration of the data flow or the payload of the data
flow, the method comprising:

creating, from a plurality of sample packets, a table

including information of packet timestamps and pre-
defined packet header fields, the plurality of sample
packets being previously transmitted on the network;
grouping the plurality of sample packets into data flows
based at least in part on information in the table;
assigning flow identifiers to each of the data flows;

grouping the data flows into a training portion and a

testing portion;

determining one or more parameters having one or more

features and/or one or more characteristics of the
training data flows;

determining a classifier to predict a type of data flow,

including iteratively training and testing the classifier,
using the training portion and the one or more param-
eters to train each classifier, and the testing portion to
determine an accuracy of the classifier;

w

10

15

20

25

30

35

40

45

50

55

60

65

38

generating a classification policy that includes the classi-
fier to classify data flows on the network using ten or
less packets of a data flow; and

providing the classification policy to a network element in
the network to classify data flows.

15. The method of claim 14, further comprising storing
the classification policy in at least one non-transitory com-
puter medium that is accessible by a network element that
classifies data flows on the network, and routing the data
flow in the network based on its respective category classi-
fication indicative of the duration of the data flow or the
payload of the data flow.

16. A method of classifying data flows being communi-
cated on a network by one or more network element(s), into
categories based on a type of data flow, the type indicative
of a duration of the data flow or a payload of the data flow,
the method comprising:

(1) obtaining samples of packets previously transmitted on

the network;

(i) grouping the samples of packets into data flows based
at least in part on the respective 5-tuple header infor-
mation of each packet;

(iii) separating the data flows into training data and test
data;

(iv) training one or more classifiers to classify data flows
into categories using one or more parameters of the
training data and using the training data to recognize
data flows that each of the categories is associated with
data flows of a different type,

(v) determining accuracy or the one or more classifiers
using the test data;

(vi) in response to determining a classifier is not accurate,
repeating portions (iv)-(v) of the method; and

(vii) providing the classification policy to a network
element to be used to classify data flows on the network
using ten or less packets of a data flow to classify the
data flow, the classification policy including a classifier
that was determined to be accurate.

17. The method of claim 16, further comprising storing
the classification policy in at least one non-transitory com-
puter medium that is accessible by the network element that
is classifying data flows on the network.

18. The method of claim 16, wherein generating a clas-
sifier for the classification policy comprises:

(1) determining an initial set of parameters including a
plurality of features and a plurality of characteristics
from the training data;

(i1) using a selected classifier model and the initial set of
parameters for respective data flows in the training
data, classify the data flows in the training data to one
of at least two categories of data flows and determine
the accuracy of the classifications of the respective data
flows using the test data;

(iii) generating one or more revised sets of parameters by
changing one or more of the features and characteristics
of the initial set of parameters;

(iv) using the selected classifier and the plurality of
revised sets of parameters for respective data flows in
the training data, classify the data flows in the training
data to one of at least two categories of data flows and
determine the respective accuracy of the classifier for
classifying the data flows in the test data using each
revised set of parameters;

(v) repeating steps (iii) and (iv) to improve the accuracy
of the classifier to determine a final set of one or more

US 10,855,604 B2
39 40

parameters for the selected classifier, the final set of
parameter being one of the revised sets of parameters;
and

(vi) including the selected classifier and the final set of
parameters in the classification policy. 5

19. The method of claim 1, wherein the type of the data

flow is indicative of the duration of the data flow.
20. The method of claim 1, wherein the type of the date

flow is indicative of the payload of the data flow.

#* #* #* #* #* 10

